
Master Thesis

Low-Latency Audio over IP on
Embedded Systems

by

Florian Meier

Start date: 02. April 2013

End date: 02. October 2013

Supervisor: Dipl.-Ing. Marco Fink

Supervising Professor: Prof. Dr.-Ing. habil. Udo Zölzer

Second Examiner: Prof. Dr. rer. nat. Volker Turau

Abstract

Transmission of audio data over networks, such as the Internet, is a
widespread technology. Up to now, the primary application is voice trans-
mission (Voice over IP). Although modern Voice over IP systems are de-
signed to reduce the audio latency, it is still too high for the bidirectional
transmission of live music. The construction of a low-latency music envi-
ronment would enable distributed musical performances and "Jamming
over IP". This thesis takes a step in this direction by building an Audio
over IP system as an embedded system. All components needed for a jam-
ming session over the Internet are integrated in a handy box on the basis
of a Raspberry Pi. This required the development of a Linux kernel driver.
Furthermore, a software for low-latency audio transmission is build and
evaluated, considering audio quality, data rate, and the reduced computa-
tional power of the embedded system.

iii

iv

Declaration by Candidate

I, FLORIAN MEIER (student of Informatik-Ingenieurwesen at Hamburg University of Tech-
nology, matriculation number 20836390), hereby declare that this thesis is my own work and
effort and that it has not been submitted anywhere for any award. Where other sources of
information have been used, they have been acknowledged.

Hamburg, 02. October 2013

Florian Meier

v

vi

TABLE OF CONTENTS vii

Table of Contents

List of Figures ix

List of Tables and Sourcecodes xi

List of Symbols xiii

1 Introduction 1

2 State of the Art 3
2.1 Effect of Latency for Musical Interaction . 4
2.2 Musical Interaction with High Latency . 4
2.3 Existing Approaches . 5

3 Fundamentals 7
3.1 Signal Paths . 7
3.2 Network Latency . 8
3.3 Audio Coding . 10
3.4 Audio on Embedded Systems . 11

3.4.1 Audio Codecs . 12
3.4.2 Digital Interfaces . 12
3.4.3 Direct Memory Access . 14
3.4.4 Audio Software . 14
3.4.5 Advanced Linux Sound Architecture . 16

4 Audio over IP 19
4.1 Low-Latency Audio Transmission . 19

4.1.1 Buffer Adjustment . 20
4.1.2 Packet Loss Handling . 20

4.2 Implementation . 22
4.2.1 Data flow . 24
4.2.2 Thread Activities . 25
4.2.3 Graphical User Interface . 26

5 Audio Kernel Driver 29
5.1 Abstract Description . 30
5.2 Structure . 31
5.3 DMA Driver . 32
5.4 Platform Driver . 33
5.5 Codec Driver . 33

5.5.1 I2S Driver . 33
5.5.2 Clocking . 34

viii TABLE OF CONTENTS

5.6 Machine Driver . 35

6 Hardware Design 37
6.1 Hardware overview . 38
6.2 Codec board . 39
6.3 Amplifier board . 42
6.4 Display Board . 44

7 Evaluation 47
7.1 Software . 47

7.1.1 Evaluation System . 47
7.1.2 Network Latency . 48
7.1.3 Journey of an Impulse . 49
7.1.4 Influences on Overall Latency . 50

7.2 Hardware . 53
7.2.1 Audio Output . 54
7.2.2 Audio Input . 56
7.2.3 Headphone Amplifier . 56
7.2.4 Input Amplifier . 58

7.3 Frequency Response . 59

8 Conclusion 61

Bibliography 63

Mathematical Proofs 66

Schematics 68

PCB Layouts 77

Bill of Materials 80

List of Acronyms 85

Content of the DVD 89

LIST OF FIGURES ix

List of Figures

2.1 General idea of Networked Music Performances 3

3.1 Signal path of conventional environment . 7

3.2 Signal path of centralized network based approach 8

3.3 Signal path of peer to peer approach . 8

3.4 Data format of I2C write transfer . 13

3.5 Data format of I2C read transfer . 13

3.6 Data format of I2S . 13

3.7 The components involved in providing audio for a Linux based system 15

4.1 Timing for playback . 21

4.2 Finite state machine of the capture controller . 22

4.3 Finite state machine of the playback controller 22

4.4 Class diagram of the main classes . 23

4.5 Data flow . 24

4.6 Activity diagram of the capture thread . 25

4.7 Activity diagram of the receiver thread . 25

4.8 Activity diagram of the playback thread . 26

4.9 Data flow for graphical user interface . 26

4.10 Graphical user interface . 27

5.1 Data and control flow for recording . 30

5.2 ASoC structure . 31

5.3 Serial audio transmission with word length ̸= frame sync period 34

6.1 Raspberry Pi . 37

6.2 Overall system . 38

6.3 Hardware overview . 39

6.4 Codec board . 40

6.5 Audio output connection . 40

x LIST OF FIGURES

6.6 Audio input connection . 41

6.7 Amplifier board . 42

6.8 Single stage of input amplifier . 43

6.9 Mute circuit . 44

6.10 Display board . 44

6.11 I2C level shifting technique . 46

7.1 Software evaluation system . 47

7.2 Exemplary network delay distribution for connection to Nürnberg 48

7.3 Exemplary network delay distribution of the simulator 49

7.4 Input and output signal and digital signals indicating the current action 50

7.5 Latency and packet loss against packet loss tuning factor without coding algorithm 51

7.6 Latency and CPU utilization against frames per block without coding algorithm 51

7.7 Latency and packet loss against simulated jitter variance without coding algorithm 52

7.8 Latency and packet loss against packet loss tuning factor with Opus 52

7.9 Latency and CPU utilization against frames per block with Opus 53

7.10 Latency and CPU utilization against simulated jitter variance with Opus 53

7.11 THD comparison of Raspberry Pi and codec board 54

7.12 Frequency spectrum of existing audio output of the Raspberry Pi while playing
back a 1 kHz sine wave . 55

7.13 Input frequency spectrum of codec board with 1 kHz sine wave input 56

7.14 Output level of headphone amplifier plotted against input level 57

7.15 SNR of headphone amplifier plotted against input level 57

7.16 THD of headphone amplifier plotted against input level 57

7.17 Output level of input amplifier plotted against input level 58

7.18 SNR of input amplifier plotted against input level 58

7.19 THD of input amplifier plotted against input level 59

7.20 Frequency response of audio codec board for 3.8 dBV 60

7.21 Frequency response of headphone amplifier for −8.12 dBV 60

7.22 Frequency response of input amplifier . 60

LIST OF TABLES xi

List of Tables

3.1 Comparison of some approximate line-of-sight distances, corresponding propa-
gation delays, and approximative transmission delays over the Internet 9

3.2 Comparison of some digital interfaces used in multimedia devices 12

3.3 Blocking delay for different period sizes and sampling frequencies 15

7.1 Comparison of SNR and THD at different gain settings for full scale output. . . 59

List of Sourcecodes

3.1 ALSA application producing a sawtooth wave 17

xii LIST OF SOURCECODES

List of Symbols xiii

List of Symbols

Symbol Description Page List

fs Sampling frequency 9, 10, 15, 19, 30, 41,
66, 67

NF Frames per audio data block 9, 10, 15, 19, 21, 22,
25, 50–52, 66, 67

(sn, sn+1, . . .) Sequence of packet sending times 9, 66

(rn, rn+1, . . .) Sequence of packet reception times 10, 21, 66

(an, an+1, . . .) Sequence of data transmission times to the hardware 21

δblock Blocking delay 15

δn Internet delay of the n-th packet 9, 10

δmin Minimum Internet delay 9, 19, 66, 67

δmax Maximum Internet delay 9, 19, 66, 67

Q Average receiver queue length 20

σQ Standard deviation of receiver queue length 20

Qtarget Target receiver queue length 20

β Receiver queue length tuning factor 20, 50–52

∆tC Time needed for concealment 21

∆tM Time needed for mixing 21

∆tS Timing safety margin 21

∆tP Total time needed for processing 21

xiv List of Symbols

1

Chapter 1

Introduction

Generation and reception of sounds builds the basis of human interaction. Therefore, transmis-
sion of audio is of substantial importance for communication. Telephony builds up a feeling
of proximity that is not possible with other forms of communication such as E-Mail or SMS.
Human interaction is not limited to the exchange of messages. Making music together unites
people. This is only possible for people within the same acoustical space. Current telephone
systems can not fulfill the demands in terms of audio quality and latency, making long-range
music sessions less pleasurable.

Despite its long history, the audio transmission technology is continuously developing. A
major part of this development is attributed to the Internet. There are a lot of Internet-based
telephony applications like Skype or Google Talk and even the long-established telephone
system is using more and more Internet technologies. For transmitting audio data over the
Internet, the continous audio stream is split into chunks of data. These packets have to find
their own way through the Internet, competing with packets from all the other Internet
applications.

Using the Internet Protocol has several advantages compared to the former circuit-switching
technique. First of all, the system utilization is much better because the medium is shared
between the different users and their applications. Although, it has a major disadvantage,
caused by the shared and best-effort nature of the Internet: The paket delay is not deterministic.
This leads to problems for resassembling the packets into a continous audio stream again.

It is commonly counteracted by using large buffers that lead to an artificial delay of the packets.
Furthermore, data compression targets at reducing the data rate. Commonly used audio
compression algorithms such as mp3 have a high inherent algorithmic delay. Both procedures
induce high overall latency of audio.

High latency is a moderate problem for standard telephony, but for some applications it is
very important to have exact timing of the audio. This includes remote guidance systems
for medical or maintenance environments and networked music performances as mentioned
above.

The purpose of this master thesis is the development of an autonomous device for networked
music performances. It is ready for plugging in a guitar and a network cable and start jamming

2 Chapter 1. Introduction

over the Internet. The core of this embedded system is a Raspberry Pi, a credit-card sized
single board computer running Linux.

Many hardware and software components complement each other in this system. This includes
circuit boards for the audio hardware, for the attachment of musical instruments, and for
driving a touchscreen that is used for user interaction. These are developed during this thesis
together with the software parts such as a Linux kernel driver for interfacing the audio
hardware and the application for networked music performances itself.

For this software, the consideration of latency is of particular importance. Therefore, it dy-
namically adapts to the network conditions and reduces the time of buffering. In the case of a
delayed or missing packet, the technique of packet loss concealment is used to calculate the
missing data from the previous packets.

The thesis is structured as follows. The current state of research concerning the influcence
of latency on musical interaction is presented in Chap. 2 together with the presentation of
existing systems. In Chap. 3, fundamentals of Audio over IP and audio on embedded systems
are covered. Chap. 4 presents the Audio over IP software and the underlying algorithms,
whereas Chap. 5 describes the developed kernel driver that interfaces the audio hardware.
This hardware is exposed in Chap. 6 and evaluated in Chap. 7 together with the software. The
thesis is concluded in Chap. 8.

3

Chapter 2

State of the Art

The general idea of networked music performances is to play music together while the audio
data is transferred via the Internet. By using this technique it is no longer necessary for the
musicians to be at the same place. This enables rehersal or practice sessions of bands that
got scattered over the continent as well as it provides a basis to form new communities of
musicians [1]. It can also be used for remote teaching of music and composing [2].

Figure 2.1: General idea of Networked Music Performances

The transfer of a session from a rehersal room to the Internet implies many technical issues. The
most severe is the increased latency. In a classical environment, the time between one player
plays a note and another one hears it is determined by the distance and the speed of sound
in air. If the sound is transferred via wire, for example in recording studios, the transmission
delay is determined by the speed of light and is negligible for classical environments. This
is no longer true for transmission via the Internet. Most of all because of the much larger
distance and the additional processing that takes place. This has significant consequences for
the musical interaction.

4 Chapter 2. State of the Art

2.1 Effect of Latency for Musical Interaction

The effect of latency for musical interaction and the maximum tolerable latency is widely
investigated. In [3], Chafe et al. have conducted the following simple experiment: Two persons
in two seperate rooms were given a simple (but different) rhythm that they should reproduce
by clapping their hands. The own sound can be heared directly, while the sound from the
other person is delayed by a variable amount of time. This was evaluated by measuring the
onsets by an automated procedure. The overall result was that the larger the delay gets, the
more the persons tend to deccelerate. This is because they hear the sound of the other person
later than it is expected, so they think in order to be synchronous they have to slow down.

It is interesting to note, that there were several regions with the same amount of decceleration
that can be more or less clearly seperated: Up to 8 ms the clappers even accelerate. This is
explained by an inherent tendency to accelerate. Up to 25 ms the tempo is more or less stable.
With more latency they were also able to maintain the clapping, but with increasing difficulty.
It was no longer possible with more than 60 ms delay. The authors assume that with 25 ms the
environment is more or less natural, as this is also the time for sound to travel a distance of
about 8 m.

With greater latency, the persons intentionally or unintentionally used strategies to overcome
the latency: This could for example pushing the beat in order to compensate for the deccelera-
tion or ignoring the sound of the other. This produces some kind of leader/follower pattern as
it also can be found for example with a drummer and a guitar player.

A similar, but more complex experiment was conducted by Chew et al. in the context of their
Distributed Immersive Performance Project [4] where they try to create a virtual space where
the participants can communicate and play music together as if they are at the same place. In
the experiment, two professional piano players play Poulenc’s Sonata for Piano Four-Hands,
while the MIDI signals from the keyboard where artificially delayed. It was discovered, that
they can play together with a delay of about 50 ms. They were conscious of the delay and it
was confusing, but they were able to compensate it with some training. However, the players
didn’t feel comfortable with their own play, because it sounds unsynchronous although it
wouldn’t be for an external audience. This led to a new technique where the sound of the own
instrument was also delayed. This rose the acceptable delay up to 65 ms, but more importantly
the players now could enjoy their play, because the heared music as such is synchronous. As
Carôt et al. state, it is very difficult to determine a general valid threshold for the maximal
acceptable latency [5]. They have evaluated the interplay of drummers and a bass player with
various delays. The acceptable delay was very different for different drummers, but in general
less latency is accepted the faster the rhythm is. The concrete values range from 60 ms down
to 5 ms.

2.2 Musical Interaction with High Latency

Although, a high latency it is not considered as natural, it doesn’t prevent musical interaction,
but creates a new form of music. Cáceres and Renaud state "In this specific case, the network is
considered as medium which bring its own acoustic contribution to the music making process
rather than being a link between two spaces." [6]. This has multiple facets: The delay can be

2.3 Existing Approaches 5

used as an effect generator for echo or reverberation, "making the distance "audible"". Secondly,
the different places and their acoustics can be used as musical element. Furthermore, the delay
itself can be used to generate music that sounds different, but nevertheless synchronous at
different places. One possibilty for this is referred to as feedback locking: The own signal (or
an artificial metronome pulse) is feed into the network and back. After the musician locked
his own tempo to the feed back signal, the beat is equal to the round trip time (RTT). When
the musician at the other end plays synchronous to this signal, the sound of both musicians is
shifted by one beat at the origin. For some music this is acceptable and creates new interesting
musical impressions.

An impressive demonstation of this effect was the Pacific Rim of Wire [7]. The Stanford New
Ensemble and the Stanford Laptop Orchestra (SLOrk) performed a concert at Stanford together
with an ensemble of traditional Chinese instruments located in Beijing. They performed Terry
Rilley’s In C. It is written as a chain of of various patterns where to musicians are free to switch
from one to the next. Therefore, each play of the piece sounds different. The tempo of the
play was exactly matched to the network delay between Stanford and Beijing (110 ms) and
was supported by the SLOrk, whose players could choose from several patterns matched to a
common metronome. The players at Beijing played synchronous to this sound while being
shifted by an eighth note at Stanford. This creates a "loose-but-synchronous" music as intended
by the composer.

2.3 Existing Approaches

One of the first research groups in the topic of networked music performances is the Center
for Computer Research in Music and Acoustics (CCRMA) at Stanford University [8]. They
started with an application called SoundWIRE that can be used to make network quality
audible, by transmitting sonar like pings. This lead to the development of a generic stream
engine for transmitting audio over the Internet. It does not utilizes any data compression
and can therefore only used over connections like the Internet2 backbone with high network
bandwidth. It uses TCP in order to guarantee that all packets are delivered. Quality of service
(QoS) is used for increasing the quality of the connection. It has a multi-threaded plugin
architecture with various input, output and processing plugins. The total latency with this
engine is about 200 ms.

In order to reduce the latency, a new engine called JackTrip was implemented by Juan-Pablo
Cáceres and Chris Chafe at the CCRMA [9]. It also does not use any data compression, but
uses UDP as underlying protocol eliminating the time-intesive retransmission that is inherent
to TCP. The danger of packet loss is counteracted by overlapping the packets. This way, a
missing packet can be reconstructed by the surrounding packets. The underlying audio engine
is the JACK sound system as implied by the name. JackTrip has several threads for audio
and networking that are connected through ring buffers with special over- and underrun
handling. For example, when data is missing and can not be reconstructed, the system plays
back silence or the last received packet. JackTrip was successfully used in several networked
music performances like the Pacific Rim of Wire presented in the previous section.

While audio data has a high data rate, the musical information itself (tone pitch, length etc.) can
be transmitted with very few data as musical instrument digital interface (MIDI). This is the
foundation of Quintet.net [10] by the Hamburg Institute for Microtonal Music and Electronic

6 Chapter 2. State of the Art

Media. The MIDI data can be directly created by appropriate instruments (keyboards etc.),
but also classical instruments can work with this system by using a pitch tracker. All data is
transmitted to a central server that is controlled by a conductor. The latency is about 200 ms to
1000 ms.

Yet another project is DIAMOUSES by the Technological Educational Institute of Crete [11].
It has a very versatile platform that can be used for many different use cases. Starting with
collaborative music rehersal to over concert broadcasts to remote music master classes. A
central server can be used for reduced network bandwidth usage, but a peer-to-peer (P2P)
connection is supported, too. It can be used with musical instrument digital interface (MIDI)
and audio data, has a dedicated portal for arranging jamming sessions and provides audience
involvement via digital video broadcast (DVB).

The notable property of Soundjack [12] developed by Alexander Carôt et al. is the possible
usage via narrow band networks like digital subscriber line (DSL) connections. It uses a
prediction-based, lossy audio codec with low delay (5.3 ms at 48 kHz) and provides error
concealment for compensating packet loss. In a jam session between Lübeck and Paris they
faced a latency of 33.3 ms including the network delay of 20 ms.

7

Chapter 3

Fundamentals

This chapter describes the fundamentals that build the basis of the successive considerations.
Starting with a comparison of a conventional music session with networked approaches, the
characteristic properties of networked music performances and audio on embedded systems
are presented.

3.1 Signal Paths

In a conventional environment as depicted in Fig. 3.1, the sound will be recorded and sampled
by means of an analog to digital converter (ADC). It is mixed with the data coming from the
other sources of sound and converted back to audible sound by a digital to analog converter
(DAC). This would also be possible without transferring the data into digital domain, but for
the networked approach this is no longer true, because the network can only transfer digital
signals.

Guitar ADC

Headphones DAC DACMixer Headphones

KeyboardADC

Rehersal room

Figure 3.1: Signal path of conventional environment

There are two different approaches for network based music distribution [11]. Fig. 3.2 shows
a centralized network based approach. All ADC send their sampled data to a server via the
network where it is mixed and send back to the DAC. The peer-to-peer (P2P) approach in Fig.
3.3 waives the need for a central server. The sampled data is send to the other parties where it
is mixed by a local mixing module. This introduces the need for mixing at every single place,
but an individual mix is quite common anyway, even in classical sessions. For example the
bass player would like to hear more drums, while the singer would like to hear more guitar
and especially himself. The choice of the appropriate approach has to be made individually
for each application. The central approach introduces additional latency in the signal path,
because the data is not transferred directly, but has to make a detour to the server. On the

8 Chapter 3. Fundamentals

other hand, the P2P approach has a higher demand for network bandwidth for more than two
participants, because a data packet has to be send multiple times, once for each participant.

Guitar ADC

Headphones DAC DACMixer Headphones

KeyboardADC

Rehersal room A Rehersal room BServer

Figure 3.2: Signal path of centralized network based approach

While the interface for the musicians is the same in the classical approach compared to the
networked approach, the one thing that is really different is the medium of data transmission
between the converters and the mixer. While it is a relatively short direct cable connection in the
first case (e.g. via AES3) it is the Internet for the latter case. This mainly affects two properties:
Latency and data rate. The first describes the time between transmission and reception of the
signal. It is important for the relative timing of the musicians. The latter describes the fact that
the Internet can handle only a certain amount of data per time. Therefore, a data compressing
coding algorithm is advised in order to reduce the required network bandwidth.

Guitar ADC

Headphones DAC DACMixer Mixer Headphones

KeyboardADC

Rehersal room A Rehersal room B

Figure 3.3: Signal path of peer to peer approach

3.2 Network Latency

Since the network itself has vast influence on the perceived end-to-end latency, it is advised to
invesigate the sources and properties of network latency. In the case of a direct connection via
optical fiber, the length of the fiber l f iber and the speed of light c determine the propagation
delay

δpropagation ≈
l f iber

0.65 · c
. (3.1)

Even this calculation results in latencies that influence the musical interaction as presented
Sect. 2.1. Table 3.1 presents various distances and the corresponding speed-of-light delay. The
transmission delays over the Internet were measured by sending an ICMP echo request packet
to the homepages of Universität zu Lübeck, Technische Universität München, Université
d’Aix et de Marseille and Columbia University, assuming the web servers are located in the
respective cities. The round trip delay got by the ping utility was divided by 2 to get the one
way delay.

For transmission over the Internet, the latency is even bigger caused by several effects that
are inherent to the Internet [13]. First of all, the Internet is not a fully connected network, but
relies on central backbones that increase the distance. Secondly, it takes some time to put a

3.2 Network Latency 9

data packet on the line, depending on the packet size and the network bandwidth. Thirdly,
the data is not transferred directly, but is passed on via multiple routers where the data is
received, analyzed and send to the next router taking some additional time. Furthermore, it is
not guaranteed that it can be processed immediately because there might be other data being
processed by the router. This introduces even more delay.

Distance δpropagation δInternet

Rehersal room 6 m 20 ns -

Large Stage 25 m 83 ns -

Hamburg - Lübeck 60 km 0.31 ms 2 ms

Hamburg - Munich 600 km 3.08 ms 9 ms

Hamburg - Marseille 1200 km 6.16 ms 14 ms

Hamburg - New York 6000 km 30.8 ms 50 ms

Table 3.1: Comparison of some approximate line-of-sight distances, corresponding propa-
gation delays, and approximative transmission delays over the Internet

This gets even worse, because the delay is neither constant nor properly predictable since the
exact way of a single data packet as well as the current load of the routers is not predefined.
This induces jitter on the received data stream. A mathematical model of the Internet jitter is
difficult to obtain [14]. Corlett et al. [15] proposed a shifted gamma function for approximating
the probability density function of Internet delay, but that is not universally accepted, too [16].

For this consideration the following simplification on the delay of a packet δn is made: There
is a minimal delay δmin that is given by the delay on the best path under best conditions. No
packet will arrive before this delay. Furthermore, there is a maximal delay δmax . A packet not
arriving before this time is considered as lost and has to be handled seperately. This might
happen, because an intermediate router has dropped the packet or it just has taken a very long
and crowded router.

Since the data transmission over the Internet is packet based, the steady stream of audio data
recorded at a sampling rate of fs has to be splitted into data blocks of size NF . This data is
then optionally coded and send to the Internet. The sequence of the packet sending times
(sn, sn+1, . . .) complies to a regular pattern described by

sn+1 = sn +
NF

fs
. (3.2)

This is no longer true for the receiver side, because of the non-deterministic behaviour of the
Internet. Under the assumption that the packet send at sn is not lost, it arrives at

sn + δn.
δmin ≤ δ ≤ δmax

(3.3)

10 Chapter 3. Fundamentals

The sequence of packet reception times (rn, rn+1, . . .) is no longer regular. The time intervall
between two packet receptions is

rn+1 − rn = sn+1 + δn+1 − (sn + δn)

=
NF

fs
+ δn+1 − δn.

(3.4)

The difference between the packet delay (δn+1 − δn) of two packets is called IP Packet Delay
Variation (IPDV) according to [17]. Since δn might be different from δn+1, the regular pattern is
destroyed.

3.3 Audio Coding

A raw, stereo, 16 bit, 44.1 kHz audio signal requires a data rate of

2 · 16
bit

sample
· 44 100

sample
s

≈ 1411
kbit

s
. (3.5)

In addition, some more network bandwidth is needed for control data (i.e. headers). For
comparison: An average digital subscriber line (DSL) connection, as used in many homes, has
an upload network bandwidth of 1024 kbit

s .

This motivates the use of a coding procedure that reduces the required bit rate. It is necessary to
distinguish between lossless and lossy coding algorithms. The first exploits the inherent redun-
dancy of the audio signal to reduce the amount of data needed, while using a representation
that allows perfect reconstruction of the original signal.

A popular example of a lossless coding algorithm is FLAC. It models the input signal (e.g. by
using a linear predictive coding) and encodes the difference to the original signal by means
of an entropy encoding. Data compression of about 50 % − 60 % can be reached [18]. For the
above example, this would yield a bit rate of about 706 kbit

s .

The lossy coding on the other hand utilizes the characteristics of the human ear in order to
create a representation that sounds similar to the human ear, but uses less data. An example
is the fact that the human ear has a frequency dependent loudness threshold under which a
sound can not be recognized. Lossy coding algorithms can reach much higher compression
ratios. For example HE-AAC was rated excellent in listening tests [19] at bit rates as low
as 48 kbit

s .

A coding method that is tailored to suit the needs of networked music performances is the
CELT codec [20]. It is merged with the SILK codec (optimized for Voice over IP (VoIP)) into
Opus, a coding algorithm that was standardized in 2012 [21]. Just like many other audio
coding algorithms (for example mp3 or Ogg Vorbis), Opus/CELT is block based and uses a
modified discrete cosine transform (MDCT). Since MDCT works on windows of data, enough
data has to be collected before the transformation can take place.

This coding delay is an important property for this application, because the first sample of a
window can not be transmitted before the last sample of a window was recorded. Therefore,

3.4 Audio on Embedded Systems 11

unlike most other codecs, Opus/CELT uses a comparably small window (down to 2.5 ms
compared to 50 ms or more). The disadvantage of the small window is the decreased frequency
resolution. Special countermeasures are implemented in Opus/CELT to minimize the audible
impact of this.

The Opus codec also implements an error concealment that can be used if a data packet is lost,
for example because of network congestion. When a packet is lost, the decoder searches for a
periodicity of the signal decoded so far and repeats it [21]. The error concealment technique
presented in [22] uses an auto-regressive model of the previous data for extrapolating new
data. The survey of multiple algorithms in this paper yields that the best algorithm provides
good sound quality for a packet loss rate of 2 %. Although, the audio quality considerably
depends on the type of music itself.

3.4 Audio on Embedded Systems

"An embedded system is a combination of computer hardware and software,
and perhaps additional mechanical or other parts, designed to perform a specific
function." [23]

In the context of this thesis, an embedded system consists of a microprocessor and a bunch
of peripherals like audio hardware that is used for a dedicated task. The dedicated task of
the developed system is recoding, playback and Internet transmission of music. Often, as in
the case of the Raspberry Pi, many peripherals are already integrated into a single integrated
circuit (IC). This is referred to as system on chip (SoC). Examples for other embedded systems
include digital cameras, anti-lock brakes, dish washers or mobile phones. Especially the last
example shows that sound capabilities are quite common for embedded systems.

When implementing sound support for a SoC based embedded system, it might be the case
that the SoC already has a dedicated analog sound peripheral. Otherwise, a digital audio
interface might be available were a specific integrated audio circuit, called audio codec, can be
connected. A fact that emphasizes the relevance of mobile phones for the embedded market is
that a major part of the existing audio codecs are especially designed for mobile phones.

On the software side there are different possibilities: The software can run directly on the
SoC (also referred to as "bare-metal-coding") or a operating system is used that provides
a lot of services for interfacing the hardware and makes the development a lot easier for
complex systems. An operating system that is widely used for embedded systems is Linux. It
is open-source, so it is easy to look at the source code and modify it in order to optimize the
operating system for the needs of the platform. The Linux kernel includes a lot of drivers that
can be used for all kinds of peripherals. In the case of a missing driver for a specific peripheral,
a dedicated driver can be written. This task is simplified by several existing services and
frameworks.

The following sections describe the hardware and software issues when connecting an external
audio codec to a SoC running Linux.

12 Chapter 3. Fundamentals

3.4.1 Audio Codecs

An audio codec is a special IC dedicated for adding analog audio support to other electrical
devices like SoC. It is not to be confused with audio codec as a synonym for a data compressing
coding method for audio. It combines an ADC and an DAC. The first transfers analog audio
signals (like those captured with microphones) to digital signals that can be processed by
digital circuits (like a microprocessors or a digital signal processor (DSP)). The latter transfers
the audio back to an audible analog signal. Many audio codecs feature additional components
like amplifiers, filters or signal multiplexers.

3.4.2 Digital Interfaces

There are many interface standards for connecting electrical devices. The ones that are im-
portant for this thesis are presented in the following sections. A first overview is given by
Table 3.2.

Payload Typical Data Rate # Devices Direction

I2C Arbitrary
(e.g. control data)

100 kbit
s Up to 1136 bidirectional

I2S Audio 1.536 Mbit
s 2 bidirectional

HDMI Video and Audio 3.96 Gbit
s 2 mainly unidirectional

Table 3.2: Comparison of some digital interfaces used in multimedia devices

3.4.2.1 I2C

Inter integrated circuit (I2C) is a general purpose digital bus for transmitting data such as
control data between various IC [24]. There are one or multiple masters that can start a
transmission and one or multiple slaves that receive a transmission. A transmission can be a
read or write operation, thus it is also possible to transmit data from a slave to a master. It uses
two data lines. SCK is a clock signal that is generated by a master. SDA is used for transmitting
data. It is possible to connect multiple IC to the same bus. Each IC gets an address that is used
by to select the IC for the current data transmission.

The lines are connected to open collector outputs and have pull-up resistors to the positive
supply making the default state positive. This makes it possible for each IC connected to
the bus, to pull the signal down as long as no other IC pulls the line down at the same time.
This creates a wired-AND connection, as the state of the signal is the AND function of the
individual states "I don’t access the line".

Fig. 3.4 shows a I2C write transfer. It can be seen that the clock has twice the frequency than
the data signal and is shifted. This is because of the specification that the data has to be stable
while the clock is high and might change while the clock is low. The only exception to this is

3.4 Audio on Embedded Systems 13

the start and stop condition: For indicating the start of a transmission, the data line goes down
while the clock stays high. For stopping the transmission, the data line goes up while the clock
stays high. It is also possible to initiate a new start signal to indicate a further transmission
without an intermediate stop signal.

SDA A6 A5 A4 A3 A2 A1 A0 R/W ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK

SCL

Figure 3.4: Data format of I2C write transfer

After sending a start signal, the write transmission proceeds with the 7-bit address of the
slave in question. It follows one low bit to indicate a write transmission. These 8 bits are
acknowledged by the slave. The gray line indicates an access of the slave. After that one byte
of data follows that is acknowledged, too. The transmission is ended by the stop signal. It is
also possible to send multiple data bytes and I2C also provides a 10 bit adressing mode not
shown here.

SDA A6 A5 A4 A3 A2 A1 A0 R/W ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK

SCL

Figure 3.5: Data format of I2C read transfer

Fig. 3.5 shows the transmission of data from a slave to a master. The first difference is that the
R/W bit is now high to indicate a read. After the ACK by the slave, a byte of data is send by
the slave. This is then acknowledged by the master that thereupon closes the connection.

3.4.2.2 I2S

Integrated interchip sound (I2S) transmits digital stereo audio data between different integrated
circuits (ICs) within the same device [25]. The data is transmitted in a serial format as depicted
in Figure 3.6.

Left Channel Right Channel

f −1
s

Bit Clock
Frame Sync

Data MSB LSB MSB LSB

Figure 3.6: Data format of I2S

The single bits of an audio sample are transmitted one after another. The transition from
one bit to another is controlled by a dedicated bit clock line. The samples are terminated
by the transition of a frame sync clock. The different channel of the stereo signal are trans-
mitted within a single period of the frame sync clock. One during high level of the frame
sync and the other during the low level of the signal. Together with the data line, I2S
uses three lines for an unidirectional connection. For a bidirectional connection it is pos-
sible to use two triples of lines or to share the clock signals resulting in a minium of four
lines.

14 Chapter 3. Fundamentals

Although, it is sometimes called I2S bus, it only connects two devices. One is responsible for
generating the clocks (referred to as master), while the other (the slave) has to adapt itself to
these signals. The frequency of the frame sync signal is exactly the sampling frequency (for
example 48 kHz). Since two samples have to fit into a single period, the bit clock depends on
the sampling frequency and the bit length of the samples. For 16 bit samples, this leads to a
frequency of 2 · 16 · 48 kHz = 1.536 MHz. Many audio codecs support other frequencies as
long as there are enough bit clock transitions for transmitting the required number of bits.

3.4.2.3 HDMI

The high definition multimedia interface (HDMI) standard is widely used in today’s consumer
multimedia devices, such as TV sets and receivers. It transmits video and audio data via a
bunch of differential digital lines. It also contains an I2C bus for transmitting information about
the connected device (display resolution etc.), a wire for hot-plug detection and a consumer
electronics control (CEC) interface for transmitting control information (for example volume
or channel selection).

3.4.3 Direct Memory Access

Once the data arrived via a digital audio connection, it has to be transferred into the random
access memory (RAM) of the computer where it can be processed by the software. Because of
the large amount of data (cf. 3.5) and the narrow timing requirements, it is favorable to do this
fast and without stressing the central processing unit (CPU) too much. As this is a common
requirement for many input and output devices, a technique called direct memory access
(DMA) was established. As the name implies, this allows peripherals to directly transfer data
from and to the RAM without making use of the CPU. The CPU is only used for setting up the
transfer.

During the evolution of the computer, many different modes were arranged. The transfer
might be triggered by the software or by the hardware and there exist many different kinds
of adressing considering the different data buses (for example ISA or PCI used in personal
computers) [26].

For embedded systems and especially for SoC, the most important data bus is the Advanced
Microcontroller Bus Architecture (AMBA) [27]. It was invented for the ARM architecture and
has the concept of bus masters and bus slaves. Bus masters can directly write to and read from
bus slaves. This allows DMA of a peripheral to the RAM as long as it was implemented as bus
master. Some peripherals might not be implemented as bus masters. They need the assistance
of a dedicated DMA controller that conducts the data transfer for them.

3.4.4 Audio Software

The audio software running on the CPU is responsible for fetching the sampled audio data
from the hardware, process it and play audio back to the hardware [28]. It typically consists of
(at least) three layers as depicted in Fig. 3.7. The lowest consists of the driver for accessing the

3.4 Audio on Embedded Systems 15

sound card (or another peripheral responsible for audio, such as an I2S interface). In Linux
most audio drivers are combined in the ALSA subsystem inside the kernel.

The ALSA subsystem provides a consistent interface that can be accessed by a library that
is part of the middle layer. The library itself can be accessed by an application of the upper
layer. The middle layer is not absolutely necessary, but it provides a much more powerful
application programming interface (API) that simplifies the development of applications. It
is also possible that there is more than one library stacked in the library layer. Each library
provides some more functionality, but it might also induce more computational effort and
complexity. For Linux these might be Portaudio or Jack. Both provide additional services, such
as mixing the signal from different applications which is not possible with plain ALSA.

Application Application

Jack, Portaudio etc.

ALSA Library

ALSA Subsystem

Hardware Driver Hardware Driver

Audio Device Audio Device

Application
Layer

Library
Layer

Kernel

Hardware

Figure 3.7: The components involved in providing audio for a Linux based system

The application has to access the audio library on a regular basis. Either to transmit new audio
data in a playback application or to collect recorded audio data in a capturing application.
Audio data is transferred in blocks of frames referred to as periods in ALSA. Each frame
contains one sample per channel (i.e. two samples per frame for stereo). The size of a period NF
has direct influence on the latency. This is an important property, especially for networked
music performances as presented in Section 3.2. The first sample of a period can only be
transferred, after the last sample of the period arrived. This leads to a blocking delay of

δblock =
NF

fs
. (3.6)

NF fs = 44.1 kHz fs = 48 kHz

64 1.5 ms 1.3 ms

128 2.9 ms 2.7 ms

240 5.4 ms 5.0 ms

1024 23.2 ms 21.3 ms

8192 185.8 ms 170.7 ms

Table 3.3: Blocking delay for different period sizes and sampling frequencies

16 Chapter 3. Fundamentals

Table 3.3 lists some common period sizes, sampling frequencies, and the corresponding
blocking delay. This latency increases lineary, if more than one block is buffered at a time,
because the application transmits further periods before the playback of the previous was
finished or does not collect the recorded periods in time. While smaller blocks and less buffered
blocks decrease the latency, it increases the timing requirements for the application. This is
because the period between the time when the application was signaled that more data is
needed and the time when the audio driver runs out of playable audio data is smaller.

This is a real-time requirement that needs particular attention, especially for low-latency
applications on systems with little processing power such as embedded systems. As stated
in [28], it is at least advisable, to increase the priority of the audio thread and use a real
time scheduler policy such as SCHED_FIFO. The current Linux standard scheduler is the
Completely Fair Scheduler (CFS). As the name implies, the main goal is to enable a balance
between the the various processes in order to increase the overall performance (in CPU
utilization as well as in reactiveness of interactive applications). Although, a audio thread
should not be fair in the sense that it should do the processing as fast as possible and at the
desired point in time in order to achieve a minimal latency. This will clearly decrease the
performance of other processes, but since the audio application is the determining application
for the embedded system this is accepted.

3.4.5 Advanced Linux Sound Architecture

Advanced Linux Sound Architecture (ALSA) is the most common framework for handling
audio in Linux. It started in the middle of the 1980s as a driver for the Gravis UltraSound
cards written by Jaroslav Kysela [29]. Since then, it was expanded to a generic audio driver
framework and got included into the official Linux 2.5 kernel in 2002 [30]. Besides audio
drivers, Advanced Linux Sound Architecture (ALSA) provides interfaces and services that
encapsulate common functionality for audio drivers, for example buffer handling. This leads
to a considerable reduction in development effort for writing and maintaining an audio driver.

ALSA is splitted into a library that is accessed by the applications (alsa-lib) and a framework
that is part of the Linux kernel. The library provides an API for developing an application with
audio support. The full documentation can be accessed at [31], but for getting a small insight,
Sourcecode 3.1 represents an application that outputs a sawtooth wave to the loudspeaker. It
is only intended for illustration, especially since it does not contain any error handling.

The structure of the code is as follows: Line 10-12 provide the initialization. This includes for
example data format, sampling frequency and data transfer mode. There are several modes
for accessing the hardware. The one used in this example is the memory mapped mode
(MMAP). The data is directly written into the buffer provided by ALSA without the need
for an additional buffer. This has the advantage that the data can be generated just in time.
Therefore, the latency is reduced. In the subsequent loop, chunks of data are submitted to
ALSA. ALSA will merge them to a continous stream of data and transmits it to the hardware. It
is of great importance that the stream does not tear off, i.e. that there is enough data available
at all times. In the case of too few data for proceeding (referred to as underrun), ALSA will
stop and the user will hear a clicking sound. Although, submitting too much data increases
the latency between submitting the data and playing the data back. This is the central trade-off
for building low-latency applications.

3.4 Audio on Embedded Systems 17

1 # include "alsa/ asoundlib .h"
2
3 int main(void) {
4 int i,j;
5 snd_pcm_t * handle ;
6 snd_pcm_sframes_t frames ;
7 snd_pcm_uframes_t offset ;
8 const snd_pcm_channel_area_t *areas;
9

10 snd_pcm_open (& handle , "hw:0,0", SND_PCM_STREAM_PLAYBACK , 0);
11 snd_pcm_set_params (handle , SND_PCM_FORMAT_S16 ,
12 SND_PCM_ACCESS_MMAP_INTERLEAVED , 2, 48000 , 1, 500000) ;
13
14 for(i = 0; i < 200; i++) {
15 if(i == 1)
16 snd_pcm_start (handle);
17
18 frames = 1024;
19 snd_pcm_mmap_begin (handle , &areas , &offset , & frames);
20
21 short *data = (short *)(areas [0]. addr
22 +(areas [0]. first+ offset *areas [0]. step)/8);
23
24 for(j = 0; j < frames *2; j++)
25 data[j] = j<<9;
26
27 snd_pcm_mmap_commit (handle , offset , frames);
28 snd_pcm_wait (handle , 1000);
29 }
30
31 snd_pcm_close (handle);
32 return 0;
33 }

Sourcecode 3.1: ALSA application producing a sawtooth wave

18 Chapter 3. Fundamentals

19

Chapter 4

Audio over IP

Based on the experiences made in previous work (cf. Sect. 2.3), a software was developed that
enables music performances via the Internet. Just like JackTrip [9] and most other Audio over
IP applications, this software uses UDP as transport protocol via the Internet. This enables
lower network latency as it would be caused by the retransmission technique of TCP but
induces the need to handle packet loss and packet reordering in the application.

In contrast to the existing approaches, the application developed in this thesis has to take
the additional constraints of an embedded system into account. First of all, this includes
the reduced computational power. This is especially important, because a data compressing
coding algorithm as well as error concealment should be used as in Soundjack [12] in order to
reduce the data rate and compensate for missing packets.

4.1 Low-Latency Audio Transmission

In order to provide a minimal end-to-end latency, while considering the low computational
power in embedded system, an adaptive receiver technique was developed for this thesis. It is
based on buffers that dynamically adapt to the network conditions and packet loss handling
with deadline control.

The main issue that has to be faced is the jitter introduced by the network as presented in
Sect. 3.2. The jitter causes an unsteady stream of packets arriving at the receiver. In contrast to
Internet applications like web browsing, e-mail or file downloads, it is necessary for audio
streaming to reassamble these into a steady stream (cf. Sect. 3.4.5). This is done by the use of a
data buffer in the form of a queue or a ring buffer. Incoming data is stored at the end of the
queue, while the data is retrieved at the front in regular time intervals.

This produces a steady data stream of data again, that will not be cut-off as long as there
is always enough data in the queue so that no packet arrives after it should be processed.
For bounded jitter (i.e. δmin ≤ δn ≤ δmax), this can be assured by delaying the first packet by
δmax − δmin and continue with regular time steps of NF

fs
. The proof for this can be found in the

appendix on page 66.

20 Chapter 4. Audio over IP

Although, the requirement of a bounded jitter is too strong for the Internet. There are two
causes for that: First of all, not all packets will arrive at all. They might get stuck somewhere and
dropped because of an overloaded router. Secondly, even if the packet finally arrives, the delay
might be much too long lead to an unacceptable end-to-end latency. Furthermore, this might
even lead to a packet outrunning another packet leading to packet reordering. Therefore, all
packets with a very high delay and especially packets arriving after their successor (identified
by a sequence number) are dropped as if they had never arrived at the receiver. All those
lost packets would lead to the buffer running out of data (buffer underrun). Therefore, a
special packet loss handling takes place that generates compensation data right before a buffer
underrun would take place.

For the sake of completeness, another error condition (buffer overrun) might occur when
there is too much data in the queue to hold another packet. Besides dropping the incoming
packet, an effective countermeasure is adequate memory allocation. As long as the sampling
frequencies are equal1, the memory consumption is bounded as proven in the appendix on
page 67.

4.1.1 Buffer Adjustment

Proper jitter compensation is directly conflicting with a low end-to-end latency, because it
introduces additional delay. It is therefore required to find a fair trade-off by using just enough
jitter compensation to maintain a satisfactory audio quality. This is achieved by controlling the
queue length, i.e. the amount of data in the buffer. The average queue length Q is measured
and regularily tuned to a target length Qtarget by inserting or dropping data so that the jitter is
suitably absorbed.

For determining the target length Qtarget as the right average amount of data, the standard
deviation of the queue length is measured, too. This is not done continuously, because the
standard deviation σQ itself is flucturating even for longer time intervals because of the self-
similar nature of the delay distribution [33]. Instead, there is a measurement phase right after
the connection was established for calculating σQ . In this phase, the queue length is tuned to a
high value for providing an undisturbed measurement. After the phase, the target length is
calculated as

Qtarget = β · σQ. (4.1)

β is a hand-tuned factor for controlling the amount packets of lost packets and therefore the
audio quality. The relationship between packet loss and audio quality was investigated in [22].

4.1.2 Packet Loss Handling

In order to prevent a buffer underrun when packets are lost, new data has to be created in that
case. Three methods are implemented:

1This is not trivial, because the sampling frequencies are derived from high frequency clocks generated for
example by temperature dependend quartz circuits. Clock synchronization is out of the scope of this thesis. An
interested reader is referred to [32].

4.1 Low-Latency Audio Transmission 21

1. Silence: Instead of the lost packet, play back silence. This leads to a clicking sound. This
is annoying if it happens too often, but might be acceptable if the amount of lost packets
is low.

2. Wavetable mode: Use the last packet received and play it back again. The perceived
sound depends on NF , the amount of lost packets and the music itself, but it might be
less perceivable than silence (cf. [9]).

3. Error concealment: Use the last packets to extrapolate the lost packet. An existing
implementation was presented in Sect. 3.3. A good error concealment might provide
good sound quality, but it requires a high computational effort.

The question remains, when to conduct the calculation. One approach as presented in [22]
is the preventive error concealment that takes place just after each packet reception. When
a packet is missing, the already calculated packet is taken. This approach induces a high
computational effort that is not feasible for embedded systems with low computational power.
Therefore, it is more adequate to conduct the calculation only for the lost packets. The main
principle is presented in Fig. 4.1 for a single stream.

t

777733333333333333333333333777777777777777777777777777777777777777333777777

Hardware requests new samples

Data arrives

ConcealmentSafety MarginMixing

Data available?

←−−→
∆tM
←−−→
∆tS

←−−−−−−−−−−−−→
∆tC

an an+1

Figure 4.1: Timing for playback

The upper time line depicts the packet reception sequence (rn, rn+1, . . .) on the upper half and
the sequence of requests of the audio hardware (an, an+1, . . .) on the lower half. Below, a section
of this time line is depicted. A bar indicates if there is valid data in the buffer. When there
is data in the buffer, it is not necessary to conduct the concealment. The processing can start
shortly before the hardware request. When there is no data in the buffer, the processing has to
start earlier, because extra time is needed for the concealment. This way a dynamic deadline is
maintained to decide when it is no longer feasible to wait if the packet eventually arrives and
the processing should start. This requires prior measurement of the time needed for concelment
∆tC and for mixing ∆tM. Furthermore, a safety margin is required for compensating impurities
in timing that result from reduced real time capabilities. For the general case of N streams and
R packets still missing, the processing has to start when the time until the hardware request
an − t is

∆tP = R · ∆tC + N · ∆tM + ∆tS. (4.2)

22 Chapter 4. Audio over IP

4.2 Implementation

Based on these considerations, a software was developed that runs on the Raspberry Pi. The
core is written in C++11 and embraces about 5000 lines of code. A class diagram of the main
classes is depicted in Fig. 4.4. Some helper classes (for example for logging and evaluation)
are not shown. The main class that will be instantiated by the main function is JamBerry. It is
composed of the list of the connected remotes and two controllers. The capture controller for
transferring data from the hardware and the playback controller for transferring the data to
the hardware.

The controllers contain the associated interfaces to the network and the audio hardware. Both
transfer the data to and from the hardware by means of a subclass of AudioProcessor. For the
capture part, this is the downmixer that mixes the stereo signal down to a mono signal. For the
playback part, this is the remote mixer that mixes the different streams according to the pan
and volume settings. The difference between the controllers is the association to the stream
classes, because there is only one encoder stream that is a member of the capture controller, but
each remote has an own decoder stream. The decoder streams are members of the remotes and
can be accessed via iterating the remote list. The controllers themself are implemented as finite
state machines (FSM). They are triggered by the ALSA library via the devices (PlaybackDevice
and CaptureDevice). The playback controller is presented in Fig. 4.8. After initialization the
stream is started. As soon as there are NF frames available in the ALSA buffer, the reading
process is started.

Init

Start Stream Waiting ReadingBlock
full

Frames missing

Underrun

Figure 4.2: Finite state machine of the capture controller

The playback controller is slightly more complex because it might be the case, that there is
already too much data available in the ALSA buffer and the controller has to wait. If this
is ensured, the controller waits until there is not time left and the writing process has to be
started in order to avoid a buffer underrun (cf. Sect. 4.1.2).

Init

Start Stream Prepare Waiting

Writing

Storage
available

an − t > ∆tP

an − t ≤ ∆tP

Underrun

Underrun

Buffer full

Figure 4.3: Finite state machine of the playback controller

4.2 Implementation 23

A
ls

aD
ev

ic
e

C
ap

tu
re

D
ev

ic
e

P
la

yb
ac

kD
ev

ic
e

Ja
m

B
er

ry

S
en

de
r

R
ec

ei
ve

r

P
la

yb
ac

kC
on

tro
lle

r
C

ap
tu

re
C

on
tro

lle
r

A
ud

io
P

ro
ce

ss
or

A
ud

io
Q

ue
ue

D
ec

od
er

S
tre

am

D
ow

nm
ix

er

E
nc

od
er

S
tre

am

1

1

FS
M

R
em

ot
e

R
em

ot
eM

ix
er

1
1

R
em

ot
eL

is
t

1 n 1 1

11

11

1
1

1

1

1 1

1
1

1

1

1 1

1 1

"o
w

ns
a"

"is
a"

"u
se

s
a"

Fi
gu

re
4.

4:
C

la
ss

di
ag

ra
m

of
th

e
m

ai
n

cl
as

se
s

24 Chapter 4. Audio over IP

4.2.1 Data flow

ALSA

CaptureController

EncoderStream

Sender

Receiver

PlaybackController

ALSA

Hardware

Downmix

Encode

Send

Single Block Buffer

Queue

Receive

Decode

Mix

Hardware

Conceal

DecoderStream

Figure 4.5: Data flow

This section describes the flow of the audio data from
the hardware of the sender to the one of the receiver as
depicted in Fig. 4.5. In the beginning, the analog audio is
sampled by the ADC of the audio codec and transferred
to the Raspberry Pi via the I2S connection. The ALSA
kernel driver will fetch the data and push it into a buffer.
From there it is regularily transferred, fetched, and pro-
cessed by the downmixer controlled by the capture con-
troller. The current version only supports a single en-
coder stream, so the stereo signal from the hardware has
to be mixed down to mono. The extension to multiple
channels is easily possible. The downmixer writes the
data to a storage inside the encoder stream.

The encoder stream will take the data from there and
encodes it into a second storage. Furthermore, it adds a
header with information that are important for decoding
(for example the frame size and the used codec). The
sender finally sends the packet out to the Internet. It uses
the list of all connected remotes and sends the packet
once for each remote address. The packet is also send
to the local address so that it is possible to mix the own
signal to the audio output. It is send uncoded, because it
is not send via the Internet and thus saves computational
effort for decoding the own signal.

The packet is fetched by the receiver at the remote. The
sender’s address is read from the packet and the re-
ceiver chooses the according decoder stream. The de-
coder stream will analyze the content of the header and
chooses the appropriate decoder. Therefore, it is not nec-
essary that all sender have to agree about a single coding
configuration or even the buffer size. This is enabled by
a frame based audio queue that receives the decoded
data.

The capture controller will regularily fetch data from the
queue. When data is missing, it will start the conceal-
ment for producing replacement data. The data from the
different streams is then mixed directly into the buffer
of ALSA by means of the mixer. ALSA finally transferrs
the data to the audio codec for transferring it back into
analog domain.

4.2 Implementation 25

4.2.2 Thread Activities

Several threads control the data flow. These are the playback thread, the receiver thread and
the capture thread (includes sending). In compliance with Sect. 3.4.4, they are running with
SCHED_FIFO real time priorites and can therefore preempt other processes running on the
Raspberry Pi (but not the kernel). The playback thread has the highest priority, followed by
the capture thread and the receiver thread.

Waiting

Reading Encoding

Sending

[enough samples available]

[samples missing]

CaptureController EncoderStream Sender

Figure 4.6: Activity diagram of the capture thread

The activities of the capture thread are depicted in Fig. 4.6. It blocks until it gets a signal of
ALSA. If enough frames NF are available, it reads the data from the ALSA buffer. The encoder
stream will now encode the data and send it via the sender class.

Receive

Decode Concealment

[packet expected]

[intermediate packet(s) missing]

[packet obsolete]

Receiver DecoderStream

Figure 4.7: Activity diagram of the receiver thread

The receiver thread is responsible for receiving the packets from the TCP/IP stack of the kernel
and finally store them into the queue. It blocks until a new packet arrives, writes the packet in
a buffer and calls the decoder stream. The decoder stream will analyze the sequence number
and compare it to the expected sequence number. If the expected sequence number is larger,
the packet was already concealed and will be dropped. If it is larger than expected, one or
multiple intermediate packets are missing, so the missing packets will be concealed. At least

26 Chapter 4. Audio over IP

after the concealment, the expected sequence counter equals the one of the incoming packet
and it will be decoded and put into the queue.

Waiting

Concealment Mix and Write

Tune Queue

[no time left]

[data missing] [data available]

[time left]

PlaybackControllerDecoderStream

Figure 4.8: Activity diagram of the playback thread

The playback thread calculates the current deadline according to Eq. (4.2). When it is woken
up, it recalculates the deadline. When there is no time left, it starts the processing. Each decoder
stream is instructed to ensure there is valid data in the queue. If there is no valid data, the
decoder stream will start the concealment. After all decoder streams are ready, the data is
mixed directly into the ALSA buffer according to the current volume and pan settings.

After the data was submitted to ALSA the queue tuning takes place. The current amount
of data in the queue is taken to calculate the average queue length. After several iterations
(currently 2000), the length of the queue is adjusted according to Sect. 4.1.1.

4.2.3 Graphical User Interface

For controlling the application, a graphical user interface written in Javascript was build.
In Fig. 4.9, the data flow is depicted. The user interface runs in a browser and provides the
additional advantage, that the control can take place from a remote computer, too. Even
multiple connections from various places at the same time are possible. A screenshot of the
user interface is shown in Fig. 4.10.

Browser

Sources wampcpp

Application

HTTP Websocket

register call publish

Figure 4.9: Data flow for graphical user interface

4.2 Implementation 27

The user interface is transferred to the browser running on the Raspberry Pi or the one on the
remote computer when connecting to the Raspberry Pi. Particular, this is the Javascript code, a
Scalable Vector Graphics (SVG) image and a single web page that brings everything together.
The proceeding communication takes place over a seperate channel based on the WebSocket
protocol that enables a permanent bidirectional connection between the core application and
the user interface.

Figure 4.10: Graphical user interface

As subprotocol, WAMP v1 [34] is used. It provides two abstractions that make the communi-
cation very convenient: The first one is remote procedure call that enables the user interface
to call methods of the core application as if it were a local function. The second one is the
publish and subscribe design pattern. At the core application as well as the user interface it is
possible to subscribe to topic. When something is published to the topic, a callback will be
called. For example, when turning a volume knob, the new value is published to the volume
topic. The core will receive this event and set the volume appropriately. At the same time, all
other connected user interfaces get the same event and can update their display accordingly.

At the Javascript side, the AutobahnJS [35] library is used. For the other side, there was no C++
library before. Therefore, a WAMP library for C++ was developed. It is build upon the existing
libraries WebSocket++ [36] and JsonCpp [37]. The latter is used, because WAMP transfers
the data in JavaScript Object Notation (JSON) format. C++ classes can link own methods to
Uniform Resource Identifier (URI). When the associated remote procedure call is called or it is
published to the associated topic, the method will be called. Since the data is transmitted in
JSON format and the C++ methods expect the data in primitive data types (such as int, float
etc.), templates are used that automatically detect the required types and convert the data
accordingly.

28 Chapter 4. Audio over IP

29

Chapter 5

Audio Kernel Driver

An integral task of this master thesis was the development of an audio driver. The system
developed is based on a Raspberry Pi. It is a single-board computer build around a Broadcom
BCM2835 system on chip (SoC) featuring an ARM11 processor core and a proprietary GPU.
Most importantly for this application, it features an integrated interchip sound (I2S) interface
for connecting external audio codecs. As operating system Linux is used that (with a modified
kernel) already provides support for most of the peripherals. However, it lacks support for the
I2S peripheral. Some first steps for accessing the I2S peripheral were made before,1 but there
was no generic audio driver supporting audio output and input. Therefore, it was necessary
to implement a kernel driver.

The control of the SoC at such a low-level, as it is necessary for writing a kernel driver, takes
place via special register accesses. From the programmers view this looks like using a pointer
pointing to an adress within the main memory. This principle is called memory mapped I/O
in contrast to isolated I/O, where the input/output (I/O) is accessed via special processor
commands. The addresses as seen by the programmer are internally mapped to bus addresses
of the Advanced Microcontroller Bus Architecture (AMBA) bus that connect the various
components inside the SoC. This is also important for programming a kernel driver, because
for some configurations the bus addresses and not the memory mapped addresses have to be
used. The concrete mapping of peripherals to addresses can be taken from the datasheet [38].
For example the bus address of the I2S peripheral is 0x7E203000. It is mapped to 0x20203000
where it can be accessed by the software.

The driver implemented during this thesis belongs to the lowest software layer as presented
in Sect. 3.4.4. It was developed as a part of the ALSA subsystem. Since this driver is targeted
on an embedded system, it is precisely a part of the ALSA System on Chip (ASoC) layer. This
layer provides a helpful abstraction that is common for embedded systems. For example, it
splits the sound drivers in multiple parts that can be changed independently, e.g. for using a
new audio codec.

This chapter starts with an abstract description of what is necessary to transfer audio data
between an application running on the Raspberry Pi and the audio codec. After that, the
overall structure of ASoC and the driver are presented and finally the single components of
the developed driver are further explained.

1Git repository of philpoole: https://github.com/philpoole/snd_pi_i2s_poor_dma

30 Chapter 5. Audio Kernel Driver

5.1 Abstract Description

For understanding the implementation of the kernel driver, it is necessary to examine how the
data has to flow from the audio codec to the random access memory (RAM) where it can be
accessed by applications. The simplified data flow is depicted in Fig. 5.1 with continuous lines.

RAMCPU

I2C Peripheral DMA Controller

I2S Peripheral

Controller
ADC

Clock Divider

Analog Audio Master Clock

Fr
am

e
S

yn
c

Bit Clock

Raspberry Pi

Audio
Codec

Setup
Timing
Data

Figure 5.1: Data and control flow for recording

The analog audio data is sampled by means of an analog to digital converter (ADC) inside the
audio codec. The sampling process is controlled by fs that is derived from the master clock
of the codec. For each sampling interval, a sample is stored in a register. The content of the
register is send bit-wise via a I2S connection as presented in Sect. 3.4.2.2. At the receiver, the
bits are written into a register again. Several samples are stored until the direct memory access
(DMA) controller transfers them to the RAM where they can finally be accessed. The same
applies to the way back (not depicted in Fig. 5.1): The DMA controller transfers a block of
samples to the I2S peripheral where it is stored until it is sent bit-wise to the audio codec. The
data is transferred into analog domain again by a digital to analog converter (DAC) in the
audio codec.

Once set up, most parts run automatically without the intervention of the CPU. The CPU only
gets a signal when there is new data in the RAM. This is directly forwarded to ALSA that
handles the event and controls the data flow to the audio application. For implementing the
kernel driver, the main focus is the configuration of the different parts and how to link them
together. This is depicted by the dotted lines showing how the central processing unit (CPU)
(as executor of the driver software) is responsible for the setup of the components.

Finally, the dashed lines present how clocks and signals are used for controlling the data
flow. The master clock is generated internally or externally of the audio codec and has the

5.2 Structure 31

highest frequency (for example 256 · 48 kHz = 12.288 MHz). It is fed into the clock divider
that generates the different clocks needed. These are mainly the clock for the ADC and the
associated filters, the bit clock for controlling the serial transmission of the audio data and the
frame sync for signalling the boundaries of a single frame. It is also possible to let the receiver
generate the bit clock and frame sync. It depends on the concrete hardware and application
which method is better (for example which part can provide a more stable clock).

The I2S peripheral will generate a data request (DREQ) signal when there is enough data
buffered (this can be adjusted by the driver). As a reaction to that, the DMA controller will
start a data transfer to the RAM. In an analogous manner, the I2S peripheral will generate a
DREQ signal when it needs more data for the transmission to the audio codec.

5.2 Structure

Application

ALSA

Machine Driver

Codec Driver DAI Driver Platform Driver

I2C Driver

I2C

DMA Engine

I2S

Audio Codec

DMA

A
S

oC

Application
Layer

Kernel

Peripherals

HardwareControl
Audio Data

Figure 5.2: ASoC structure

The characteristic structure of an audio driver inside of ASoC and the their interaction with the
external components is depicted in Figure 5.2. The different parts of the driver are as follows:

Codec Driver It provides control access to the codec. It is for example responsible for initial-
ization, volume or gain. This typically takes place via a serial connection such as inter
integrated circuit (I2C). Another common possibility is Serial Peripheral Interface (SPI).
The serial interface is not directly accessed, but via an appropriate kernel subsystem.

DAI Driver The digital audio interface (DAI) driver accesses the hardware for writing and
reading of the audio data. The DAI might be I2S or a similar format. Settings have to be
made according to the concrete data format.

32 Chapter 5. Audio Kernel Driver

Platform Driver The platform driver is responsible for controlling the data transfer between
DAI peripheral and ALSA. Usually (but not always) this takes place via DMA. Since
DMA is a technique used by many other drivers, there is another associated kernel
subsystem called DMA engine.

Machine Driver The machine driver brings everything together. It contains only the code
that is necessary for a specific combination of codec, DAI and platform. Therefore, only
this part has to be rewritten if for example a new audio codec should be used.

5.3 DMA Driver

In order to enable fast data transfer from the I2S peripheral to the RAM, DMA is used. It is
not mandatory for accessing the audio hardware but it significantly reduces the CPU load.
As presented in Sect. 3.4.3, there are two possibilites for DMA, depending on the peripheral
being a bus master or not. The I2S peripheral inside the BCM2835 belongs to the latter case
[38]. Therefore, a DMA controller has to be used. There is already a proprietary application
programming interface (API) for the DMA controller inside the Raspberry Pi kernel but it does
not fit into the common DMA engine subsystem of the kernel that is used by ASoC. Therefore,
the implementation of a wrapper that matches the existing API to the one of the DMA engine
subsystem was performed.

The basic operation principle is the submission of tasks. A task is defined as a control block
containing source and destination address, data length, and some control flags. These addresses
are an example for the case that AMBA bus adresses have to be used rather than memory
mapped adresses as mentioned at the beginning of the chapter. This is because the DMA
controller directly works on the bus and has no information about the mapping made inside
the ARM core. An example for a control flag is the DREQ flag. With this flag set, the task
is executed not before the peripheral signals that there is new data available. Another flag
indicates that the CPU should be signaled when a transfer is finished. A further data field
specifies the address of the next control block. This builds a linked list of tasks that should be
conducted one after another.

The DMA subsystem specifies various data transfer modes that determine how the different
tasks should be linked. Amongst others, these are slave_sg and dma_cyclic. The sg is an
acronym for scatter/gather, meaning that the data coming from a peripheral is scattered to
multiple memory positions or gathered from multiple memory positions. For a peripheral it is
common to have a single register for reading and writing the data, where the data appears
sequentially. In order to build a block of memory, the software might use this mode for
instructing the DMA controller to increment the writing address after each reading from the
register. After a block is filled, the next task points to the beginning of the next block in memory.
The other mode, dma_cyclic, equates to slave_sg, the only difference is that in this mode, the
controller starts from the beginning over and over again until it is explicitly stopped. Currently,
the driver only supports dma_cyclic mode. It is the most adequate mode for the audio driver,
because it implies the least involvement of the CPU.

5.4 Platform Driver 33

5.4 Platform Driver

The task of the platform driver is to connect the DMA engine driver to ASoC. This mainly
includes setting up the memory that should be used for the DMA according to the audio
related settings (for example buffer size). Since both APIs (the one of the DMA engine driver
and the one of ASoC) do not depend on the concrete platform, this driver looks nearly the
same on many platforms. Therefore, a generic DMA engine driver is included in ASoC that
deals with this task2. Therefore, the platform driver only contains some settings and a link to
the generic DMA engine.

5.5 Codec Driver

The codec itself is configured via a serial interface. It was not necessary to write a codec
driver, because there already exist drivers for many popular audio codecs. Due to the modular
structure of ASoC, it was easy to use them without changes.

There are two main tasks that involve the codec driver. The first is the setup needed to start the
transmission. This includes setting up the sampling rate and the DAI bit format. Furthermore,
specific commands are used to enable and disable different parts of the audio codec, thus
making the codec to begin sampling data. The second task is the control of parameters while
the audio codec is running. These commands, such as volume control, are passed on to ALSA
so that they can be controlled by user interfaces such as alsamixer.

5.5.1 I2S Driver

For using an I/O peripheral, it is first of all necessary to establish the physical connection.
On the Raspberry Pi, the four lines of the I2S peripheral can be accessed via a pin header.
Before they can be used, the port has to be configured to provide the right signals. For SoCs
or microcontrollers it is common that a data line coming out of the IC can adopt multiple
functionalities. This provides great flexibility while maintaining a lower number of data lines,
reducing cost and footprint. For example, the bit clock of the I2S port might also be configured
as SDA line of another I2C port.

After that, a sequence of further configurations is necessary as presented in the datasheet [38].
The following steps are necessary for starting a DMA based I2S transmission on a BCM2835:

1. Enable the peripheral.
2. Configure the format and start the clock.
3. Clear the data buffer. Otherwise, old data might be transmitted.
4. Set up the thresholds for generating the DREQ signals and enable them.
5. Set up and start the DMA controller.
6. Start the transfer.

2In fact it was just introduced during the time of writing this thesis. The first version of the proposed driver had
an own implementation of the interconnection

34 Chapter 5. Audio Kernel Driver

The audio peripheral of the BCM2835 is very flexible. In fact it is not only a I2S peripheral, but
supports also various other serial audio formats. It is possible to configure frame sync period,
duty cycle, position and length of the channels with bit clock resolution. Although, there is
only a single frame sync for both directions. Therefore, it is not possible to use for example
different sampling rates for input and output. This is in contrast to the typical assumption of
ALSA where the streams can be configured independently. Additional effort has to be made
for ensuring that both streams have the same settings by interrupting the configuration of a
second stream in case the first stream was already configured with a different setting.

5.5.2 Clocking

In many cases, the I2S clocks are generated by the audio codec itself. This is the case for
the developed hardware, too. It has a seperate clock generator that is controlled via I2C and
provides a master clock. The audio codec generates the I2S clocks from the master clock.
Although, it might also be the case that the I2S clocks should be created by the BCM2835. This
might be because the audio codec can not provide the clock or does not produce the right
clock for the desired sampling rate. In that case one has to utilize one of the internal clocks
and divide them down to fit the needed frequencies. This is of particular difficulty, because
the BCM2835 does not provide a clock having an adequate audio frequency. The frequencies
that can be easily accessed are 19.2 MHz and 500 MHz. The frequencies needed for a sampling
rate of 48 kHz are the sampling rate itself as frame sync and a multiple of that, for example
1.536 MHz as bit clock as derived in Sect. 3.4.2.2. None of the above frequencies can be divided
by an integer divider to reach this frequency.

There are two solutions for this: The most common is the use of a non integer divider. This
clearly can not produce a perfect clock, but produces a clock with a varying frequency that has
the desired frequency as average. An early patent presenting this technique is [39]. It uses a
structure that is similar to the one found in delta-sigma ADCs. For minimizing the undesirable
effect, the BCM2835 uses multi-stage noise shaping (MASH) that shifts much of the noise into
higher frequencies where it harms less at the cost of an overall increase of noise [40].

The second solution utilizes the fact, that many audio codecs do not require a specific ratio
of bit clock to frame sync as long as there are at most enough bit clock cycles within a frame
sync cycle to contain the desired word length, and the bit clock frequency is not too high. The
state of the data line in the remaining bits does not care as shown in Fig. 5.3. This leads to the
uncommon number of 40 bit clock transitions per frame sync period resulting in a bit clock
frequency of 40 · 48 kHz = 1.92 MHz. This can be generated form the 19.2 MHz clock by an
integer divider of 10. Both solutions are implemented and the latter one is chosen for matching
sampling rates (e.g. 48 kHz and 96 kHz).

Left Channel Right Channel

f −1
s

Bit Clock
Frame Sync

Data MSB LSB MSB LSB

Figure 5.3: Serial audio transmission with word length ̸= frame sync period

5.6 Machine Driver 35

5.6 Machine Driver

The machine driver is usually very small since it only contains configurations for merging
the different parts. The other drivers are written in a very generic fashion for supporting a
plurality of configuration options such as the format of the serial audio transmission. The
supported configuration options are not necessarily equal for all involved parts so it is the task
of the machine driver to choose the appropriate format that all involved parts support.

Furthermore, the machine driver includes configurations that are specific for a concrete
hardware. This could be for example the control of a digitally controlled external amplifier
or the configuration of the master clock. The latter can be restrictive such as allowing only
specific sampling rates that can be derivated from the master clock or it could include the
configuration of an external IC used for generating the desired frequency.

36 Chapter 5. Audio Kernel Driver

37

Chapter 6

Hardware Design

The device developed during this master thesis is based on a Raspberry Pi. It was chosen
because of the small size, the low price, and the manifold extension possibilites. The internals
were already presented in the last chapter. This chapter will present the external connections
and how the Raspberry Pi is integrated into self developed components to build the complete
system. Fig. 6.1 contains a picture of the Raspberry Pi presenting the various connection
possibilities.

Ethernet

USBRCA Video
Audio Output

GPIO, I2C

I2S

SD Card
(from below)

Power

HDMI

Figure 6.1: Raspberry Pi

Unfortunately, the Raspberry Pi features no audio input and the audio output is not connected
to a DAC, but a pulse wide modulation (PWM) module. This provides medium quality audio.
Therefore, an external audio codec is used for providing audio input and output. It is designed
to provide stereo line-level analog connections. This is adequate for stationary environments
(such as a rehersal room) where a musician uses mixing consoles for mixing analog signals
from multiple microphones and instruments into a single stereo audio signal.

Although, the prototype that was developed for this thesis should also be useable as a stan-
dalone device for presenting the Audio over IP technology without the need of external
components. It should be possible to connect a guitar and a microphone directly to the device

38 Chapter 6. Hardware Design

as well as headphones for audio output. Therefore, a preamplifier and a headphone amplifier
are connected to the audio codec.

The interaction of a user with an embedded system is possible in many ways. The most
elementary one is the use of push buttons and indicator lamps. The disadvantage is the
reduced flexibility, because adding a button requires redesign of the chassis and electronics.
Since the Raspberry Pi provides interfaces like a personal computer, the connection of an
external display and common input devices (keyboard and mouse) is possible and provides
much more flexibility because a graphical user interface can be implemented in software.
It is also possible to use a graphical user interface by an external device such as a personal
computer, mobile phone or tablet computer. While such a device is present more often than
not, it provides the additional advantage of being a remote control. The place where the signals
have to be handled (for example the stage) can be distance of the place of user interaction (for
example at the front of house).

In order to provide maximum flexibility while waiving the absolute need of external compo-
nents, a dual approach is used: A graphical user interface was developed as presented in Sect.
4.2.3 that can be accessed by an external computer. The same interface can be accessed by a
touchscreen integrated in the embedded device.

6.1 Hardware overview

Raspberry Pi

Codec Board

Amplifier Board

Display Board

Power Supply

Ethernet
Audio In

Audio Out

Headphones

Figure 6.2: Overall system

The overall system is depicted in Fig. 6.2, while Fig. 6.3 is schematic representation of the
electronic subassemblies and their interconnections. The system is composed of three self-
developed circuit boards, the Raspberry Pi and the touchscreen. The core in terms of function-
ality as well as spatial arrangement is the Raspberry Pi. An opening in the amplifier board

6.2 Codec board 39

enables direct access to the Ethernet connector as well as to the USB connectors. External input
devices can be connected to the USB connectors, but this is normally not needed since the
touchscreen can be used for interfacing the system.

The codec board, featuring the audio codec and a generator for the audio clock, is stacked
onto the Raspberry Pi and can also be used without the amplifier board for testing purposes
or for building up a stripped down version of the device. Perpendicularly connected to the
codec board is the amplifier board. A 9 pin D-sub connector provides electrical as well as
mechanical connection. The amplifier board provides the amplifiers and audio connectors
for typical audio equipment such as XLR connectors for microphones and TRS connectors
for guitars and line-level components. A stereo mini TRS connector receives the plug for the
headphones. Furthermore, the power supply for the system is located on this board.

Raspberry Pi

Clock
Generator

Audio
Codec

HDMI
Receiver

Controllers

Input
Amplifier

Headphone
Amplifier

Amplifier Board

Codec Board Display Board

Figure 6.3: Hardware overview

The display board is aligned parallel to the amplifier board by means of threaded rods for
mechanical stability. The touchscreen lies upon the upper ones and is clamped by the circuit
boards. Power supply for the display board (and finally the touchscreen) comes directly from
the amplifier board, while the entire communication is conducted via a HDMI cable. While
HDMI conventionally only transmits video (and possibly audio) content, it provides a I2C
line typically used for identifying the connected display. This one is diverted to carry the
control data to the touchscreen and backlight controllers and touch measurements back to the
Raspberry Pi.

6.2 Codec board

The audio codec used on the developed codec board depicted in Fig. 6.4 is the CS4270 by
Cirrus Logic. Sample rates up to 192 kHz with oversampling from 32× up to 128× and a
maximum of 24 bits per sample are supported. It provides stereo audio input and output
and various digital interface formats, in particular I2S. The supply voltage and thereby the
high voltage level of the digital interface ranges from 3.3 V to 5 V. The first one matches the
digital signals of the Raspberry Pi. The digital and the analog part of the CS4270 are driven

40 Chapter 6. Hardware Design

Audio Input

Audio Output

To Amplifier Board

To Raspberry Pi

Audio Codec Clock Generator

Figure 6.4: Codec board

by different power supplies. The digital part gets the power directly from the 3.3 V line of the
Raspberry Pi, while the power for the analog part is generated by a linear voltage regulator
from the 5 V line in order to reduce noise.

The CS4270 is available in a 24-pin TSSOP package and is therefore solderable by hand. This is
important, because a reflow oven for automatic soldering was not available. Surprisingly, this
criterion was very restrictive: Most of the more complex IC available today are provided in
packages such as BGA or QFN. This has certainly many advantages for industrial products,
first of all the smaller footprint, but it considerably complicates the production of prototypes.

The external connections of the codec are build according to the datasheet of the CS4270
and depicted in the appendix on page 69. The analog input and output connections will be
examined more closely. Fig. 6.5 shows the connection of a single output channel.

vout

470Ω
3.3 µF

DAC

10 kΩ 2.7 nF

Figure 6.5: Audio output connection

The 3.3 µF capacitor and the 10 kΩ resistor build a high-pass filter with cut-off frequency

fc =
1

2π · R · C
=

1
2π · 10 kΩ · 3.3 µF

= 4.82 Hz (6.1)

6.2 Codec board 41

for suppressing direct current (DC). The other components build an anti-imaging low pass
filter. Since the CS4270 uses oversampling, the requirements are not very strict. The cut-off
frequency of this filter is

fc =
1

2π · 470 Ω · 2.7 nF
= 125.4 Hz. (6.2)

This allows for a sampling frequency of 4 kHz with L = 32× oversampling. In this case, the
cut-off frequency should be

fc = L · fs −
fs

2
= 32 · 4 kHz − 4 kHz

2
= 126 kHz. (6.3)

Since the normal operation mode of the final device uses 48 kHz sampling frequency at 128×
oversampling, the cut-off frequency could be higher, but it is not necessary, because the
attenuation of the filter at fs

2 is only

|H (2π · 24 kHz)| = 1√
1 + (ωRC)2

=
1√

1 + (2π · 24 kHz)2 (RC)2
= −0.156 dB. (6.4)

vin

2.2 kΩ
10 µF

ADC

1.5 kΩ220 pF

Figure 6.6: Audio input connection

The connection to the audio input is depicted in Fig. 6.6. Similar to the output connection, it
attenuates low frequencies (for blocking DC) and high frequencies (against aliasing). With a
3.3 V supply voltage, the full-scale input voltage is, according to the datasheet, 0.56 · 3.30 V =
1.80 V ≈ 0.64 Vrms. Since line-level signals of 1.55 Vrms

1 should be applied, the signal has to be
divided down. The divider build up by the resistors is

2.2 kΩ + 1.5 kΩ
1.5 kΩ

≈ 2.5. (6.5)

The source impedance seen by the ADC is the parallel connection of the resistors with a
resistance of

2.2 kΩ · 1.5 kΩ
2.2 kΩ + 1.5 kΩ

= 892 Ω. (6.6)

1There are various standards for line-level voltages. This one is the one used for german broadcasting (ARD)
and is relatively high compared to consumer audio equipment.

42 Chapter 6. Hardware Design

This value is smaller than 1 kΩ as required by the audio codec. Finally, the input impedance
as seen from the outside is

2.2 kΩ + 1.5 kΩ = 3.7 kΩ. (6.7)

For providing the clock for the audio codec, an external clock generator, the MAX9485, is used.
It generates the required clock (for example 256 · 48 kHz = 12.288 MHz) from a 27 MHz quartz
crystal. An additional DAC is mounted on the board for fine-tuning the sampling frequency.

6.3 Amplifier board

Audio Output Audio Input

H
ea

dp
ho

ne
s

Headphone
Amplifier

Input
Amplifier Power

Supply

To Codec Board 9 V-12 V

Figure 6.7: Amplifier board

The amplifier board in Fig. 6.7 provides various connectors for external audio equipment. Two
combined XLR/TRS connectors can receive plugs from microphones, guitars, keyboards and
other instruments as well as signals coming from an external mixer. Since they all might have
different signal levels, an analog preamplifier amplifies the signals to line-level for feeding
them into the codec board. The output signal can be directly accessed via TRS connectors and
is fed into a headphone amplifier, too.

A coaxial power connector receives the plug from an external AC adapter providing a voltage
of 9 V up to 12 V. The power is fed into multiple voltage regulators providing power for the
various components. A LM2675M switching regulator provides power for the Raspberry Pi and
the codec board. Two LM1117MPX linear regulators provide 7 V and 5 V for the amplifiers. The
use of two different regulators for 5 V results from the characteristic of a switching regulator
and the digital components on the Raspberry Pi to produce noise that would influence the
amplifier output quality. On the other hand, a switching regulator is more efficient than a
linear regulator and is therefore used for powering the Raspberry Pi.

The input amplifier uses a two-stage non-inverting operational amplifier circuit. A single stage
is depicted in Fig. 6.8. The operational amplifier is an OPA2134 by Texas Instruments.

Since an audio signal is a AC signal with voltages above and below zero, an additional negative
voltage source would be needed for powering the operational amplifier. For simplicity of the

6.3 Amplifier board 43

−

+

7 V

2.2 MΩ

1 µF

vin

2.2 MΩ

4.7 kΩ

47 µF

1 µF

vout

50 kΩ1 kΩ

47 µF

Figure 6.8: Single stage of input amplifier

power supply a different approach was used: The (AC coupled) audio signal gets a voltage
offset of 3.5 V by using resistors with high resistance (2.2 MΩ). This signal is fed into the
positive input of the operational amplifier. The potentiometer in the feedback loop can be
adjusted to provide an amplification of 0 dB up to

G = 1 +
RFB

RG
= 1 +

50 kΩ
1 kΩ

≈ 34 dB. (6.8)

This would also amplify the voltage offset, driving the operational amplifier into saturation.
Therefore, a capacitor is used for the connection of the feedback loop to ground. For DC, the
ideal resistance of the capacitor is infinite, resulting in an amplification of 0 dB regardless of
the potentiometer. By chaining two of those stages, an overall amplification of 68 dB can be
archived. This high amplification is especially needed for microphones.

For the headphone amplifier, a MAX13331 is used. This IC contains two Class AB headphone
amplifiers that can deliver up to 135 mW into 35 Ω headphones. The amplifier is set to a
constant amplification of 20 dB. A potentiometer builds up a voltage divider to attenuate
the incoming signal. The line-out TRS connectors can also deliver this attenuated signal or
the original signal, depending on the assembly. For providing minimum noise at silence, the
CS4270 and the MAX13331 both feature MUTE circuits. The CS4270 provides two digital
signals, one for each channel, to indicate if audio output is present. The MAX13331 features a
single digital input for shutting the amplifier down. For combining the two signals into one,
the circuit in Fig. 6.9 is used. With at least one channel not muted, the resistor pulls the signal
up and enables the headphone amplifier. When both channels are muted, the MOSFETs start
conducting and the signal is pulled low. The amplifier is disabled.

44 Chapter 6. Hardware Design

649 kΩ

5 V

MUTE_BOTH

MUTE_LEFT

MUTE_RIGHT

Figure 6.9: Mute circuit

6.4 Display Board

HDMI
HDMI

Receiver

Touch
Controller

To TouchscreenBacklight
Controller

Power
Supply

9 V-12 V

Figure 6.10: Display board

The display that is accessed by the display board depicted in Fig. 6.10 is a A13-LCD7-TS by
Olimex. It consists of a 7" Thin Film Transistor (TFT) touchscreen AT070TN92 by INNOLUX
and a circuit board developed by Olimex. This circuit board has two functionalities that
simplifies the development of a prototype. First of all, the AT070TN92 is connected via a
flexible flat cable (FFC). This requires a special connector, while the Olimex board provides pin
headers that can be accessed by ordinary jumper cables or a ribbon cable. Secondly, the board
provides multiple voltage regulators that are necessary for generating the various voltages
needed for driving a TFT. Only a single 3.3 V power source is needed for driving the Olimex
board. It is generated by a LM2675M switching regulator that is powered directly by the input
power supply of the device that is connected through the amplifier board. This switching
regulator provides the power for the other components on the display board, too.

First of all, this is the TFP401A by Texas Instruments. It is used for translating the HDMI signals
to the digital signals of the display. The use of a TFP101A (a predecessor of the TFP401A) for

6.4 Display Board 45

driving a TFT display of an embedded system (a BeagleBoard) was previously done by Till
Harbaum [41]. The output signal consists of three 8 bit parallel busses (one for each color: Red,
green and blue). They change from one pixel to the next, triggered by a dedicated clock line.
For assigning the pixels to a rectangular grid, a HSYNC and a VSYNC line seperate the pixels
into rows and finally full frames. A further DE line indicates blank times (for example before a
frame starts). These signals (28 in total) are directly fed into the display.

A SCDT line indicates when there is no input signal (especially when the Raspberry Pi is shut
down). It is used to disable the power supply of the display. For controlling the backlight of
the display, a MCP4726 DAC is used. It can be controlled via I2C and adjusts the feedback
voltage of the backlight driver located on the Olimex board.

For enabling touch input, a resistive touch panel is used. It consists of two layers of resistive
material. When the user presses the panel, the layers have contact and a position depended
resistance can be measured. This is done by means of a AD7879-1W touchscreen controller by
Analog Devices. It internally provides median and averaging filters for filtering noise out that
would lead to a jittering mouse pointer. The touch panel layers are directly connected to the
touchscreen controller that conducts the measurements in regular intervals which can be read
out via I2C.

As mentioned in Sect. 6.1, there is no dedicated I2C cable connection between the Raspberry
Pi and the display board. Instead, the I2C connection inside of the HDMI cable is used.
The traditional use case (to inform about the display properties) is carried out by a 24LC64
EEPROM, but is only included for compatibility with other embedded systems, because the
Raspberry Pi does not necessarily depend on this information, because it can also provided
via a configuration file. The use of the HDMI I2C connection requires a small modification of
the Linux kernel, because it is usually not accessed by the CPU. The intended functionality
can be achieved anyway.

A further characteristic complicates the interface. The voltage level of this I2C connection is 5 V,
but the touchscreen and backlight controllers should be interfaced with 3.3 V. The backlight
controller supports I2C signals up to 5.5 V, but this requires a higher supply voltage. This might
lead to a analog voltage that is higher than 3.3 V with accidentially wrong configuration, finally
leading to a possible hardware defect of the backlight circuit. The touchscreen controller does
not support a higher supply voltage. The only alternative would be another controller with
higher supply voltage, but the range of alternative touchscreen controllers in hand-solderable
packages (cf. Sect. 6.2) is small. A TSC2003 by Texas Instruments was tested, but the lack of
median filtering leads to less touch precision.

Instead, a level shifting technique was used as presented in [42]. It utilizes two MOSFET
transistors as shown in Fig. 6.11. In this circuit, a 2N7002 MOSFET is used. I2C devices
operating at 5 V are to be connected on the right side, devices operating at 3.3 V are to be
connected on the left side. The connection is the same for the SCL as well as the SDA line.

This approach is possible because of the use of open collector outputs and pull-up resistors
for I2C as presented in Sect. 3.4.2.1. During idle state, no device is pulling down the line and
the pull-up resistors on both sides pull the line up to the respective high level. The voltage
between gate and source (Vgs) of the MOSFET is approximately zero (slightly higher because
of the residual resistance of the open collector outputs). Therefore, the MOSFET channel is
closed and no current is flowing. Different voltage levels at source and drain are possible.

46 Chapter 6. Hardware Design

3.3 V

4.7 kΩ

SDA3.3 V

4.7 kΩ

5 V

SDA5 V

3.3 V

4.7 kΩ

SCL3.3 V

4.7 kΩ

5 V

SCL5 V

Figure 6.11: I2C level shifting technique

When a device on the left side pulls down the line, Vgs rises to 3.3 V. The MOSFET starts
conducting and current flows, pulling down the line on the right side. Both sides are now at
low level as intended by the 3.3 V device. The same outcome results, when a device on the
right side pulls down the line. The effect is a slightly different. Since, the Drain and the Source
are connected via the body diode, current flows from the left to the right side when the voltage
on the right side is smaller. This increases Vgs and finally the voltage is pulled down to low
level on the left side, too.

47

Chapter 7

Evaluation

7.1 Software

7.1.1 Evaluation System

For evaluating the reaction of the system to various network conditions, an evaluation system
as depicted in Fig. 7.1 is set up. A single Raspberry Pi is used as sender as well as receiver for
eliminating the influence of non synchronized clocks. It sends the generated packets over the
Internet to a server that sends the received packets back to the Raspberry Pi. The overall delay
is measured by means of a sound generator, generating clicks in regular intervalls, and an
oscilloscope.

Raspberry Pi

Audio Codec

Echo Server

Simulator

Figure 7.1: Software evaluation system

The echo server is located in a computing center in Nürnberg, approximately 450 km away
from the Raspberry Pi in Hamburg. This connection is used for determining a typical network
condition. Since the data has to travel back and forth before playing it back, this corresponds
to a jam session with a musician 900 km away (e.g. Hamburg - Milan in Italy). It was observed
that these conditions do not only change on a small scale (e.g. from packet to packet), but
also on a larger scale (e.g. depending on the time of day). Therefore, a simulator is build to
eliminate the large scale dependency for making the measurements more comparable among
each other.

48 Chapter 7. Evaluation

This simulator is a software running on a personal computer attached to the Raspberry Pi via
a single network switch. It receives packets and sends them back after a delay determined by
an adjustable random number generator. No packet is send back before the previous packet
was send, because there was no packet reordering detected for the Nürnberg connection. The
probability density function of the random number generator is a shifted gamma function as
proposed in [15]. The probability density function is defined as

P(x|k, θ, s) =
1

Γ(k)θk (x − s)k − 1 e−
x−s

θ . (7.1)

The parameters k and θ determine the shape and scale of the distribution and s shifts the
probability density function on the x-axis. Additionally, an adjustable amount of packets d are
randomly dropped. This simulates packets that get lost for example because of a congested
router.

7.1.2 Network Latency

As a first step, the network delay to Nürnberg is analyzed and the simulator is set up accord-
ingly. For this purpose, each packet is equipped with a time stamp at the time of sending and
reception. The difference between these two time stamps corresponds to the network delay.
Fig. 7.2 shows the resulting delay distribution for a measurement of 25 seconds.

0 5 10 15 20 25
0

20

40

60

80

Time in s

Pa
ck

et
D

el
ay

in
m

s

0 20 40 60 80
0

500

1,000

Packet Delay in ms

C
ou

nt

Figure 7.2: Exemplary network delay distribution for connection to Nürnberg

The average delay of this distribution is 18 ms with a standard deviation of 4 ms. In order to
fit to this connection, the simulator was set up with a mean of 2 ms and a variance of 9.5 ms2

for the unshifted gamma distribution and it is shifted by 14 ms. This results in the parameters
k = 8

19 , θ = 19
4 , and s = 14. A packet loss factor of d = 0.098% was chosen that matches the

number of entirely lost packets in the measured connection.

The distribution of the delay with the simulator at these settings is shown in Fig. 7.3. The
histogram shows a similar shape and the delay keeps within the same limits. Although, the
real delay shows more burstiness. There are times where most packets have a higher delay
(e.g. around 8 s), while there are times where the jitter is much smaller than in average (e.g.

7.1 Software 49

0 5 10 15 20 25
0

20

40

60

80

Time in s

Pa
ck

et
D

el
ay

in
m

s

0 20 40 60 80
0

500

1,000

Packet Delay in ms

C
ou

nt
Figure 7.3: Exemplary network delay distribution of the simulator

around 20 s). The latter case has no audible impact (besides a possible imprecise adjustment),
but the first case might lead to packet loss bursts where several consecutive packets are lost,
leading to a longer pause in audio data. It induces additional difficulties for error concealment,
because more data has to be predicted at once. This effect is not considered in the simulation
so far.

7.1.3 Journey of an Impulse

For measuring the influcence of the network conditions and software parameters on the overall
audio latency, the time shift of the audio data was analyzed by means of an oscilloscope. As
an audio signal a short sine burst was used, because it can be easily recognized and measured
in time domain and (in contrast to a DC pulse) is not affected by AC coupling of the audio
hardware. Additionally, the software marks a packet, when a certain level is exceeded for
indicating the sine burst packet. This makes it possible to recognize when the burst is processed
in a software module. Thereupon, a GPIO pin is set to high and back to low after the processing.

The results are visualized in Fig. 7.4. In the example without coding, the overall latency is
slightly more than 40 ms. The network delay (the time from sending until reception) is about
15 ms and the packet is delayed about 16 further milliseconds before it is mixed and send to
the audio hardware. The times before encoding and after mixing depend on the block size and
the relative position of the first burst slope to the beginning of the block. Therefore, for this
experimental setup, there is an inherent timing variance in the magnitude of a block length.
This implies that the exact time duration of the recording or playback process can not be
measured. Although, the time between mixing and playback is distinctly longer than the time
of recording, because of the safety margin (cf. Sect. 4.1.2). By further improving the real time
behaviour of the system, this time duration might be reduced.

In order to reduce the audio data rate, the Opus coding algorithm can be enabled. This reduces
the bit rate from 768 kbit

s down to 72 kbit
s . For the measurement with enabled Opus coding,

the overall latency increased to 47 ms. This is partly induced by the additional time needed
for error concealment (about 3 ms). This implicitly increases the target queue length, because

50 Chapter 7. Evaluation

−5 0 5 10 15 20 25 30 35 40 45 50 55

Audio In

Time in ms

Audio Out

Encoding

Sending

Reception

Decoding

Mixing

7.4.1: Without coding algorithm, β = 3, NF = 120

−5 0 5 10 15 20 25 30 35 40 45 50 55

Audio In

Time in ms

Audio Out

Encoding

Sending

Reception

Decoding

Mixing

7.4.2: With Opus coding algorithm, β = 3, NF = 240

Figure 7.4: Input and output signal and digital signals indicating the current action

the concealment decreases the mean time until processing. Furthermore, the CPU utilization
considerably increases because of the error concealment and the Opus coding algorithm.
The last fact is reflected in the broader impulses for encoding and decoding. For a single
packet, the overall amount of computation seems to be small, compared to the overall latency,
but it has to be beared in mind, that there are many transmissions running in parallel (in
intervals determined by NF) and other software components (e.g. the kernel) have to find
time for computation, too. Therefore, it is necessary to increase NF in order to reduce the CPU
utilization. This depencency will be further investigated in the next section.

7.1.4 Influences on Overall Latency

For the following figures, the previously described experiment was repeated with various
settings. The default setting is β = 3 and NF = 120. While using the Opus coding algorithm,
NF = 240 is chosen. The simulator settings specified above are used for measuring the overall
latency. Furthermore, the percentage of concealed packet was measured over a time span of

7.1 Software 51

one minute. For estimating the CPU utilization, the Linux program "top" was used.

1 1.5 2 2.5 3 3.5 4

30

40

50

60

β

L
at

en
cy

in
m

s

0

5

10

15

20

Pa
ck

et
lo

ss
in

%

Latency Packet loss

Figure 7.5: Latency and packet loss against packet loss tuning factor without coding
algorithm

The first Fig. 7.5 shows the influence of the packet loss tuning factor β on the overall latency
and the packet loss. A higher β increases the target queue length and therefore the overall
latency. On the other hand, the packet loss decreases because more network jitter is tolerated.
A packet loss of 2 % was selected as appropriate threshold according to the evaluation in [22].
Therefore, β = 3 was chosen as optimal parameter.

60 120 240 480

30

40

50

60

Frames per block NF

L
at

en
cy

in
m

s

0

20

40

60

80

100
C

PU
ut

ili
za

tio
n

in
%

Latency CPU utilization

Figure 7.6: Latency and CPU utilization against frames per block without coding algo-
rithm

A further setting that influences the latency is the number of frames per block NF as presented
in Fig. 7.6. All in all, less frames per block induce a lower blocking delay and therefore a lower
overall delay. On the other hand, the CPU utilization increases, because more frames have
to be handled within the same time span. Finally, at NF = 60, the CPU utilization leads to
congestion of the system. Therefore, packets might not be handled in time and this induces
higher jitter, finally leading to a higher overall latency again. NF = 120 was chosen for minimal
latency at acceptable CPU load.

52 Chapter 7. Evaluation

4.5 7 9.5 12 14.5

30

40

50

60

Jitter Variance

L
at

en
cy

in
m

s

0

5

10

15

20

Pa
ck

et
lo

ss
in

%

Latency Packet loss

Figure 7.7: Latency and packet loss against simulated jitter variance without coding algo-
rithm

After determining the optimal settings for the original network scenario, the influence of other
network scenarios was investigated. Fig. 7.7 shows the effect of various variance settings of
the simulator. As intended by the algorithm, the packet loss stays nearly constant while the
system adapts itself to the modified conditions by increasing the overall latency.

1 1.5 2 2.5 3 3.5 4

30

40

50

60

β

L
at

en
cy

in
m

s

0

5

10

15

20

Pa
ck

et
lo

ss
in

%
Latency Packet loss

Figure 7.8: Latency and packet loss against packet loss tuning factor with Opus

By enabling the Opus coding, the overall latency increases as presented in the previous section.
This is observable in Fig. 7.8, too. However, the relation between the packet loss tuning factor
and the packet loss does not change significantly. The same β = 3 was chosen.

Fig. 7.9 confirms the assumption of an increased CPU utilization. While, for NF = 120, the
CPU utilization is about 50 % for the non-coding case, it leads to a highly unstable system at
full load for the Opus case. Therefore, NF = 240 was chosen, reducing the CPU utilization to a
tolerable magnitude.

7.2 Hardware 53

60 120 240 480

30

40

50

60

Frames per block NF

L
at

en
cy

in
m

s

0

20

40

60

80

100

C
PU

ut
ili

za
tio

n
in

%

Latency CPU utilization

Figure 7.9: Latency and CPU utilization against frames per block with Opus

4.5 7 9.5 12 14.5

30

40

50

60

Jitter Variance

L
at

en
cy

in
m

s

0

5

10

15

20

Pa
ck

et
lo

ss
in

%

Latency Packet loss

Figure 7.10: Latency and CPU utilization against simulated jitter variance with Opus

Finally, the effect of modified jitter was investigated in Fig. 7.10. The overall latency increases
with the jitter and the packet loss stays low. Although, the system does not guarantee the exact
compliance to the 2 % mark, because it is an open loop system.

7.2 Hardware

In order to evaluate the audio quality of the developed hardware, several measurements are
conducted with an UPV Audio Analyzer by Rohde & Schwarz. When not stated otherwise, the
default settings were used. The voltages in this section are root mean square (RMS) voltages.
The measurements follow the same principle: Audio is generated and fed into the component.
The output is measured and metrics can derived by comparing input and output signal
assuming the input signal is ideal. The following metrics are investigated:

54 Chapter 7. Evaluation

Total Harmonic Distortion (THD) describes the amount of distortions induced by non-linear
behaviour. It is calculated by dividing the power of the harmonics of a signal by the
power of the source signal.

Signal to Noise Ratio (SNR) is a measure that describes the noise power relative to the signal.
Noise might be induced for example by digital components or power supplies. The upper
bound of the SNR is determined by the resolution of the ADC.

Frequency Response describes the amplification or attenuation of a signal as a function of
the frequency. Audio devices might damp higher or lower frequencies (for example,
because they are AC coupled).

7.2.1 Audio Output

For the evaluation of the audio output, it was necessary to provide audio in digital domain.
Therefore, sound files with a 1 kHz sine wave were generated at different levels. Since they
are digital signals, the level is measured in relation to full scale output (all bits high). This
equates to 0 dBFS. The same measurements were taken for the codec board as well as for the
existing audio output of the Raspberry Pi. In Fig. 7.11 the THD values of the Raspberry Pi
PWM module and the codec board are compared at various levels. The best THD that can be
reached is −88 dB at −6 dBFS for the codec board. For louder sounds, some more harmonics
arise. Although, even then it is much better than values for the existing audio output.

-20 -10 -6 -3 0

−80

−60

−40

−20

0

Level in dBFS

T
H

D
in

dB

Raspberry Pi Codec board

Figure 7.11: THD comparison of Raspberry Pi and codec board

For a better insight in these characteristics, Fig. 7.12 depicts the resulting frequency spectra. The
output level is measured relative to the maximum output (i.e. 0 dBr = 776 mV = −2.2 dBV).
Apparently, the harmonics are much smaller for the codec board. Notably, the noise floor of
the codec board is lower for higher frequencies but higher for low frequencies. It is important
to note that the ALSA volume slider of the Raspberry Pi PWM module supports higher values
than 0 dB (up to 4 dB). The measurements are referred to the 0 dB setting. For a higher setting,
the measurements get even worse because clipping takes place.

7.2 Hardware 55

102 103 104
−150

−100

−50

0

Frequency in Hz

L
ev

el
in

dB
r

Raspberry Pi Codec board

7.12.1: For 0 dBFS

102 103 104
−150

−100

−50

0

Frequency in Hz

L
ev

el
in

dB
r

Raspberry Pi Codec board

7.12.2: For −20 dBFS

102 103 104
−150

−100

−50

0

Frequency in Hz

L
ev

el
in

dB
r

Raspberry Pi Codec board

7.12.3: For silence

Figure 7.12: Frequency spectrum of existing audio output of the Raspberry Pi while play-
ing back a 1 kHz sine wave

56 Chapter 7. Evaluation

7.2.2 Audio Input

For the audio input, the other direction was taken. Analog signals were played back and
recorded as digital files. These files were analyzed afterwards. Since the audio output is
designed for a maximum input level of 1.55 V, a 1 kHz sine wave with this level was played
back. It results in a digital signal of 0 dBFS. The frequency spectrum is depicted in Fig. 7.13.
The corresponding THD is −91 dB. For calculating the SNR, some silence was recorded and
analyzed. The measured level is −93 dBFS corresponding to a SNR of 93 dB for a full scale
signal. It is 5 dB smaller than the theoretical quantization noise for 16 bit of 98 dB.

102 103 104
−150

−100

−50

0

Frequency in Hz

L
ev

el
in

dB
FS

Figure 7.13: Input frequency spectrum of codec board with 1 kHz sine wave input

7.2.3 Headphone Amplifier

The measurements for the headphone amplifier were conducted completely in the analog
domain. For those, the codec board was disconnected from the amplifier board and the analog
sound was fed directly into the D-Sub connector of the amplifier board. The first measurement
in Fig. 7.14 verifies the operation of the amplifier by showing a higher output than input level.
For example, an input signal of −40 dBV results in an output signal of −24 dBV resulting in an
amplification of 16 dB. Apparently, the targeted amplification of −20 dB is not quite reached.
Although, listening tests have shown, that it is fairly loud for studio headphones and far too
loud for earplug headphones. Another finding emphazies the fact that the resistors for setting
the gain were choosen too high: The amplifier does not produce levels higher than 13 dB and is
therefore overdriven at an input level above −7 dBV. Unfortunately, the audio codec delivers
levels up to −2.2 dBV. This limit is even more obvious in Fig. 7.16 where the THD is plotted
against the input voltage. At the point where the amplifier is overdriven, the signal is clipped
and the harmonic distortions are much higher. Although, when the level is slightly reduced to
−6 dBFS, the audio quality is quite good with a THD of −84 dB and a SNR of 82 dB.

7.2 Hardware 57

−100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0 10
−80

−60

−40

−20

0

20

0 dBFS−6 dBFS

Input Level in dBV

O
ut

pu
tL

ev
el

in
dB

V

Figure 7.14: Output level of headphone amplifier plotted against input level

−100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0 10
0

20

40

60

80

0 dBFS−6 dBFS

Input Level dBV

SN
R

in
dB

Figure 7.15: SNR of headphone amplifier plotted against input level

−100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0 10

−100

−50

0

0 dBFS−6 dBFS

Input Level in dBV

T
H

D
in

dB

Figure 7.16: THD of headphone amplifier plotted against input level

58 Chapter 7. Evaluation

7.2.4 Input Amplifier

Since the input amplifier should support a wide range of audio equipment, a high maximum
gain is required, while lower gain settings should be suitable, too. The measurement was
counducted like the one for the headphone amplifier. Since multiple gain settings are possible,
the measurement was repeated for gains of 68 dB, 51 dB, 34 dB, 17 dB, and 0 dB. The various
output levels are plotted against the input level in Fig. 7.17. Of course, the amplification
increases, but noise is amplified, too. This is visible by looking at lower input levels: Except for
the 0 dB case, the curves start to rise not before approximately −80 dBV. This threshold is even
more apparent in Fig. 7.18 that shows the SNR and in Fig. 7.19 that shows the THD. For better
comparison of the gain settings, Table 7.1 lists the gain settings and the corresponding input
level that is required for full scale input. For example, for a guitar that is directly connected
to the amplifier, a gain of about 17 dB would be choosen, because it provides a level of about
200 mV. Therefore, the SNR is about 66 dB and the THD is about −81 dB for this example.

−100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0 10
−100

−50

0

0 dB

17 dB

34 dB

51 dB

68 dB

Input Level in dBV

O
ut

pu
tL

ev
el

in
dB

V

Figure 7.17: Output level of input amplifier plotted against input level

−100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0 10
0

50

100
0 dB

17 dB

34 dB

51 dB

68 dB

Input Level in dBV

SN
R

in
dB

Figure 7.18: SNR of input amplifier plotted against input level

7.3 Frequency Response 59

−100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0 10

−100

−50

0

0 dB
17 dB

34 dB
51 dB

68 dB

Input Level in dBV

T
H

D
in

dB

Figure 7.19: THD of input amplifier plotted against input level

Gain Input Level for 0 dBFS SNR THD

Logarithmic Linear

0 dB 3.8 dBV 1.55 V 102 dB −70 dB

17 dB −13.2 dBV 219 mV 66 dB −81 dB

34 dB −30.2 dBV 30.9 mV 48 dB −74 dB

51 dB −47.2 dBV 4.37 mV 31 dB −57 dB

68 dB −64.2 dBV 617 µV 12 dB −37 dB

Table 7.1: Comparison of SNR and THD at different gain settings for full scale output.

7.3 Frequency Response

The frequency responses are measured by playing back a sine wave with a fixed level, but vari-
able frequency and plotting the output level in relation to the input level. For the headphone
amplifier, an input level of −8.12 dBV was choosen to not overdrive the amplifier. The plot
in Fig. 7.21 shows a high pass behaviour with a cut-off frequency of 135 Hz. Smaller output
capacitors could be choosen for supporting lower frequencies.

For the audio codec the input level is 1.55 V = 3.8 dB. In total, the system attenuates the signal
by −6 dB, because the full scale output is 776 mV. The input amplifier was driven with the
settings from Table 7.1 and these measurements result in the frequency responses in Fig. 7.22.
No significant frequency dependent attenuation takes place for the audio codec as well as for
the input amplifier.

60 Chapter 7. Evaluation

102 103 104

−6

−4

−2

0

Frequency in Hz

L
ev

el
in

dB
r

Figure 7.20: Frequency response of audio codec board for 3.8 dBV

102 103 104
0

5

10

15

Frequency in Hz

L
ev

el
in

dB
r

Figure 7.21: Frequency response of headphone amplifier for −8.12 dBV

102 103 104

0

20

40

60

80

0 dB

17 dB

34 dB

51 dB

68 dB

Frequency in Hz

L
ev

el
in

dB
r

Figure 7.22: Frequency response of input amplifier

61

Chapter 8

Conclusion

Networked music performances provide great potentials for uniting musicians over large
distances. Furthermore, research in this direction enables other use cases of high quality and
low latency Audio over IP such as medical remote assistance. Yet, the inherent characteristics
of the Internet induce some important issues. First of all, the transmission delay over the
Internet is large and has a high jitter. Secondly, packets might get lost. And last but not least,
uncompressed high quality audio transmission requires a high network bandwidth.

These issues have to be faced when developing a system for networked music performances.
Of particular importance for musical interaction is the amount of end to end latency. When
the audio of the other musicians is delayed too much relative to the own play, it is increasingly
difficult to play in synchronity. Values above 60 ms are hard to compensate, but even for lower
delay, it requires some practice to get used to it.

In this thesis, an embedded system providing support for networked music performances was
developed. Transmission of uncompressed audio is supported as well as it utilizes the Opus
coding algorithm for reducing the data rate by a factor of about 10. In order to compensate
the network delay, a queue is used for buffering the incoming audio data. In contrast to a
fixed queue length as used in many systems, the queue length is dynamically adapted to the
measured network jitter. Since complete compensation of the jitter is not feasible, a certain
amount of lost packets is accepted and added to the number of lost packets that is lost in the
Internet anyway. The audible effect of the lost packets is reduced by a technique called error
concealment that calculates replacement data.

This is provided by a software that is integrated in an embedded system based on a Raspberry
Pi. Several additions were added to this ARM based single-board computer for building up
the complete system. Since the Raspberry Pi does not provide a proper analog audio interface,
an extension board featuring a CS4270 audio codec was build. The communication to the
Raspberry Pi takes place via an I2S connection. For using this connection it was required to
write a Linux kernel driver that supports the I2S peripheral of the Raspberry Pi.

The embedded system was further enhanced by the development of an amplifier board that
supports a wide range of instruments with an adjustable gain of at most 68 dB. Furthermore, a
headphone amplifier is integrated as well as support for line-level signals. For waiving the
need of further external components, a touchscreen is integrated for providing a user interface.

62 Chapter 8. Conclusion

For interfacing the touchscreen via the HDMI interface of the Raspberry Pi yet another board
is build. The user interface can also be accessed by an external web browser via a WebSocket
connection. Altogether, all components needed for enabling a networked music performance
are integrated into a single device.

The assessment of the audio components shows a good overall audio performance. Although,
a weakness in the gain setting of the headphone amplifier was discovered that slightly reduces
the range of output levels. For evaluating the Audio over IP software, a typical Internet
connection over a total line-of-sight distance of about 900 km was analyzed. A simulator was
build that complies to the discovered parameters. It is shown that the system achieves an
overall latency of about 40 ms to 50 ms for packet loss rates of about 2 %. This amount of lost
packets can be handled quite good by state of the art error concealment algorithms, but the
computational effort is quite high. The results show that an adaptive adjustment of the queue
length is beneficial and performs as intended. A open-loop control as used in this thesis is
useful, but requires hand tuning of parameters and is therefore not universally applicable
when conditions change (for example a new error concealment is used).

This might be improved by using a closed-loop control with the packet loss as reference. A
much simpler approach would be to outsource the control to the user. Starting from an initial
value that is determined by the presented algorithm, the musician gets a slider that provides
the possibility to balance the perceivable latency against the audio quality induced by the
packet loss. This has the additional advantage, that the effect of the latency as well as the audio
quality of the error concealment distinctly depends on the type of music.

Further work should be done to improve the computational complexity of the error conceal-
ment and the coding algorithm to make it more suitable for the low computational power of
the embedded system. The evaluation shows, that this would permit shorter block lengths
and finally lower latency. It is also sensible to evaluate the error concealment with respect to
packet loss burst since the evaluation of the network conditions show a highly variable nature
than can not be properly described by a single packet loss factor.

The software system should be further optimized in terms of real time behaviour in order to
lower the times reserved for processing and finally achieving lower overall latency. Using a
realtime kernel should improve the behaviour, although a first test has shown no significant
improvements. Further investigations are needed for precise identification of disturbing
activities.

Regarding the device itself, some adjustments should be done in order to reach even better
audio quality. The concrete actions should include using a smaller gain for the headphone
amplifier as well as optimizing the output stage of the headphone amplifier with respect to
low frequencies. Furthermore, a chassis should be build in order to be prepared for rugged
stage applications.

BIBLIOGRAPHY 63

Bibliography

[1] D. Akoumianakis and C. Alexandraki, “Understanding networked music communi-
ties through a practice-lens: Virtual ’Tells’ and cultural artifacts,” in Proceedings of the
International Conference on Intelligent Networking and Collaborative Systems (INCOS’10),
Thessaloniki, Greece, Nov. 2010.

[2] C. Alexandraki and D. Akoumianakis, “Exploring new perspectives in network music
performance: The DIAMOUSES framework,” Computer Music Journal, vol. 34, no. 2, Jun.
2010.

[3] C. Chafe, J.-P. Caceres, and M. Gurevich, “Effect of temporal separation on synchroniza-
tion in rhythmic performance,” Perception, vol. 39, no. 7, Apr. 2010.

[4] E. Chew, R. Zimmermann, A. A. Sawchuk, C. Papadopoulos, C. Kyriakakis, C. Tanoue,
D. Desai, M. Pawar, R. Sinha, and W. Meyer, “A second report on the user experiments in
the distributed immersive performance project,” in Proceedings of the Open Workshop of the
MUSICNETWORK, Vienna, Austria, Jul. 2005.

[5] A. Carôt, C. Werner, and T. Fischinger, “Towards a comprehensive cognitive analysis of
delay influenced rhythmical interaction,” in Proceedings of the International Computer Music
Conference (ICMC’09), Montreal, Quebec, Canada, Aug. 2009.

[6] J.-P. Cáceres and A. B. Renaud, “Playing the network: the use of time delays as musical
devices,” in Proceedings of the International Computer Music Conference (ICMC’08), Belfast,
North Ireland, Aug. 2008.

[7] J.-P. Cáceres, R. Hamilton, D. Iyer, C. Chafe, and G. Wang, “To the edge with china:
Explorations in network performance,” in Proceedings of the International Conference on
Digital Arts (ARTECH’08), Porto, Portugal, Nov. 2008.

[8] C. Chafe, S. Wilson, A. Leistikow, D. Chisholm, and G. Scavone, “A simplified approach
to high quality music and sound over IP,” in Proceedings of the COST-G6 Conference on
Digital Audio Effects (DAFx-00), Verona, Italy, Dec. 2000.

[9] J.-P. Cáceres and C. Chafe, “JackTrip: Under the hood of an engine for network audio,”
Journal of New Music Research, vol. 39, no. 3, Nov. 2010.

[10] G. Hajdu, “Quintet.net - A quintet on the internet,” in Proceedings of the International
Computer Music Conference (ICMC’03), Singapore, Oct. 2003.

[11] C. Alexandraki, P. Koutlemanis, P. Gasteratos, N. Valsamakis, D. Akoumianakis, G. Milol-
idakis, G. Vellis, and D. Kotsalis, “Towards the implementation of a generic platform
for networked music performance: The DIAMOUSES approach,” in Proceedings of the
International Computer Music Conference (ICMC’08), Belfast, North Ireland, Aug. 2008.

64 BIBLIOGRAPHY

[12] A. Carôt, U. Krämer, and G. Schuller, “Network music performance (NMP) in narrow
band networks,” in Proceedings of the AES Convention, Paris, France, May 2006.

[13] A. S. Tanenbaum and D. J. Wetherall, Computer Networks, 5th ed. Prentice Hall, 2011.

[14] V. Paxson and S. Floyd, “Wide area traffic: The failure of Poisson modeling,” IEEE/ACM
Transactions on Networking (ToN), vol. 3, no. 3, Jun. 1995.

[15] A. Corlett, D. Pullin, and S. Sargood, “Statistics of one-way internet packet delays,” in
Proceedings of the Internet Engineering Task Force (IETF’02), Minneapolis, Minnesota USA,
Mar. 2002.

[16] “Meeting report of the IP performance metrics group,” in Proceedings of the Internet
Engineering Task Force (IETF’02), Minneapolis, Minnesota USA, Mar. 2002.

[17] C. Demichelis and P. Chimento, “IP Packet Delay Variation Metric for IP Performance
Metrics (IPPM),” RFC 3393 (Proposed Standard), Internet Engineering Task Force, Nov.
2002.

[18] J. Coalson. (2013, Jan.) flac hompage: Comparison. Xiph.Org Foundation. [Online].
Available: https://xiph.org/flac/comparison.html

[19] “Subjective listening tests on low-bitrate audio codecs,” EBU Project Group B/AIM
(Audio in Multimedia), Tech. Rep. EBU Tech 3296-2003, Jun. 2003.

[20] J.-M. Valin, T. Terriberry, C. Montgomery, and G. Maxwell, “A high-quality speech and
audio codec with less than 10-ms delay,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 18, no. 1, Jan. 2010.

[21] J. Valin, K. Vos, and T. Terriberry, “Definition of the Opus Audio Codec,” RFC 6716
(Proposed Standard), Internet Engineering Task Force, Sep. 2012.

[22] M. Fink, M. Holters, and U. Zölzer, “Comparison of various predictors for audio extrap-
olation,” in Proceedings of the International Conference on Digital Audio Effects (DAFx’13),
Maynooth, Ireland, Sep. 2013.

[23] M. Barr, Programming Embedded Systems in C and C++. O’Reilly Media, Inc., 1999.

[24] “I2C-bus specification and user manual,” NXP Semiconductors, User manual UM10204,
Oct. 2012.

[25] “I2S bus specification,” Philips Semiconductors, Specification, Jun. 1996.

[26] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device Drivers, 3rd ed. O’Reilly
Media, Inc., 2005.

[27] “AMBA AXI and ACE Protocol Specification,” ARM Limited, Specification, Feb. 2013.

[28] R. Lorriaux, “Real-time audio on embedded linux,” in Proceedings of the Embedded Linux
Conference (ELC’11), San Francisco, CA, USA, Apr. 2011.

[29] J. Kysela. (1998, Feb.) The Linux Ultra Sound Project. [Online]. Available: http:
//internet.perex.cz/~perex/ultra/index.html

[30] ALSA project. (2013, Jul.) Main Page News. [Online]. Available: http://www.alsa-project.
org/main/index.php/Main_Page_News

https://xiph.org/flac/comparison.html
http://internet.perex.cz/~perex/ultra/index.html
http://internet.perex.cz/~perex/ultra/index.html
http://www.alsa-project.org/main/index.php/Main_Page_News
http://www.alsa-project.org/main/index.php/Main_Page_News

BIBLIOGRAPHY 65

[31] ALSA project. The C library reference. [Online]. Available: http://www.alsa-project.org/
alsa-doc/alsa-lib

[32] A. Carôt and C. Werner, “External latency-optimized soundcard synchronization for
applications in wide-area networks,” in Proceedings of the AES Regional Convention, Tokio,
Japan, Jul. 2009.

[33] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the self-similar nature of
ethernet traffic (extended version),” IEEE/ACM Transactions on Networking (ToN), vol. 2,
no. 1, Feb. 1994.

[34] “WAMP - the WebSocket application messaging protocol,” Tavendo GmbH, Specification.
[Online]. Available: http://wamp.ws/spec

[35] AutobahnJS library. Tavendo GmbH. [Online]. Available: http://autobahn.ws/js

[36] WebSocket++. Zaphoyd Studios. [Online]. Available: http://www.zaphoyd.com/
websocketpp

[37] B. Lepilleur. JsonCpp - JSON data format manipulation library. [Online]. Available:
http://jsoncpp.sourceforge.net

[38] “BCM2835 ARM Peripherals,” Broadcom Corporation, Datasheet, 2012.

[39] P. S. Gaskell, N. J. R. King, E. Breakenridge, and M. J. Ball, “Fractional-n frequency
synthesizer using delta-sigma modulator in divider control circuit,” U.S. Patent 5 079 521,
Jan., 1992.

[40] M. Kozak and I. Kale, “A pipelined noise shaping coder for fractional-N frequency
synthesis,” IEEE Transactions on Instrumentation and Measurement (TIM), vol. 50, no. 5, Oct.
2001.

[41] T. Harbaum. DVI2PAR. [Online]. Available: http://harbaum.org/till/dvi2par/index.
shtml

[42] “Level shifting techniques in i2c-bus design,” NXP Semiconductors, Application note
AN10441, Jun. 2007.

http://www.alsa-project.org/alsa-doc/alsa-lib
http://www.alsa-project.org/alsa-doc/alsa-lib
http://wamp.ws/spec
http://autobahn.ws/js
http://www.zaphoyd.com/websocketpp
http://www.zaphoyd.com/websocketpp
http://jsoncpp.sourceforge.net
http://harbaum.org/till/dvi2par/index.shtml
http://harbaum.org/till/dvi2par/index.shtml

66 Mathematical Proofs

Mathematical Proofs

Proof of Intentional Packet Delay

Proof that it is possible to generate a continuous stream of data from a packet stream afflicted
with bounded jitter by delaying the first packet and continue with regular time steps. Given
the time sequence of packet generation (sn, sn+1, . . .) that follows

sn+1 = sn +
NF

fs
. (8.1)

The packet generated at sn arrives at

sn + δn (8.2)
δmin ≤ δn ≤ δmax. (8.3)

The first packet is intentionally delayed by δmax - δmin and processed at

r0 = s0 + δ0 + δmax − δmin. (8.4)

Subsequent packets are are processed in a regular sequence (rn, rn+1, . . .) that follows

rn+1 = rn +
NF

fs
. (8.5)

Show that the processing never takes place before the packet arrives, i.e. for all n holds

rn ≥ sn + δn. (8.6)

Step 1: Proof by induction

rn = sn + δ0 + δmax − δmin. (8.7)

Basis: (8.4)

r0 = s0 + δ0 + δmax − δmin. (8.8)

Mathematical Proofs 67

Inductive Step: Given induction hypothesis

rn = sn + δ0 + δmax − δmin (8.9)

holds. Then follows from (8.5)

rn+1 = sn + δ0 + δmax − δmin +
NF

fs
(8.10)

= sn+1 −
NF

fs
+ δ0 + δmax − δmin +

NF

fs
(8.11)

= sn+1 + δ0 + δmax − δmin. � (8.12)

Step 2: Estimation

(8.3) ⇒ δn ≤ δ0 + δmax − δmin (8.13)
rn = sn + δ0 + δmax − δmin ≥ sn + δn. � (8.14)

Proof of Maximum Storage

Proof of an upper boundary for the number of packets waiting for processing at the receiver,
namely

rn ≤ sn+i + δn+i ∀i ≥
⌈
(2 · δmax − δmin) · fs

NF

⌉
. (8.15)

Given as proven above

rn = sn + δ0 + δmax − δmin (8.16)
(8.3)⇒ rn ≤ sn + 2 · δmax − δmin (8.17)

⇒ rn ≤ sn +
(2 · δmax − δmin) · fs

NF
· NF

fs
(8.18)

⇒ rn ≤ sn + i · NF

fs
∀i ≥

⌈
(2 · δmax − δmin) · fs

NF

⌉
(8.19)

(8.1)⇒ rn ≤ sn+i ∀i ≥
⌈
(2 · δmax − δmin) · fs

NF

⌉
(8.20)

⇒ rn ≤ sn+i + δn+i ∀i ≥
⌈
(2 · δmax − δmin) · fs

NF

⌉
. � (8.21)

68 Schematics

Schematics 69

70 Schematics

Schematics 71

72 Schematics

Schematics 73

74 Schematics

Schematics 75

76 Schematics

PCB Layouts 77

PCB Layouts

16
-0

8
-1

3
B
a
u
t
e
il

s
e
it

e
2
3
5
2
4
8

L
o
e
t
s
e
it
e

2
3
5
2
4
8

16
-0
8
-13

16
-0

8
-1

3
B
e
s
t
u
e
c
k
p
la

n
2
3
5
2
4
8

B
e
-P
la
n
 L
S

2
3
5
2
4
8

16
-0
8
-13
L
S
M
 L
o
e
t
s
e
it
e

2
3
5
2
4
8
16
-0
8
-13

L
S
M
 B

a
u
t
e
il

s
e
it

e
16

-0
8
-1

3
2
3
5
2
4
8

+

+

- +

+

+C1

C
11

C
12

R16

C5

C2

R
2
1

B
U
3

B
U
4 Q1

C
P
1

J
P
1

C
P
8

S
T
1

C
P
5

C
3
3

U
2

R
14 R
15

C34

U
3

R
10 C
P
6 C
3
2

R
2
2

C8

R9

R8

R4 C3

C
3
0

R5

C
P
7 U
1

R19

U
5

R
12

ST4

ST3

R
13

C35

C14

C10

U4
C9

R
11

R
7

C31

R
6

C13

C4

C
6

ST5

D
1

F
1

ST2

C
od

ec
B

oa
rd

78 PCB Layouts

B
a
u
t
e
ils

e
it

e
0
6
-0

9
-13

2
3
5
2
4
9

2
3
5
2
4
9

0
6
-0
9
-1
3

L
o
e
t
s
e
it
e

B
e
s
t
u
e
c
k
p
la

n
0
6
-0

9
-13

2
3
5
2
4
9

B
e
-P
la
n
 L
S

2
3
5
2
4
9

0
6
-0
9
-1
3

L
S
M
 L
o
e
t
s
e
it
e

2
3
5
2
4
9

0
6
-0
9
-1
3

L
S
M
 B

a
u
t
e
ils

e
it

e
0
6
-0

9
-13

2
3
5
2
4
9

- +

+

+

+

+

S
T
1

S
T
8

ST
6

D2

D
3

C
2C

1

R
2
8

C18

R40

R41

R2R1

R34

D
5 D

4

C
7C

6

C26

C
P
13

P1

C
P
11

C
P
12

C
15

S
T
2

R
2
1

L1

ST7

C12R
3
7

R3

C
P
1R
3
2

C
4

CP4

S
T
4

C
P
2

R
3
0

R
3
5

S
T
9

P2

R
10

C
P
6

R
9

C9

CP5 R
11

C24

P3
C22C19

R
2
0

R36

C
2
3

R25

U
6C
14

R
2
3

J
P
1R

2
6

C21S
T
3R
2
2

C13

D
1

R39 U
7

D
6

C11 CP10

CP9

T
2

R
5 R
6

T
1

R8

C
2
5

U
4

R4

R38

U5

R
17

R18

C
P
8

R
16

R12

R14

R29 U
9

R
13

R
3
1

R33

CP15C16

U3

R
2
4

CP16

C
17R
2
7

C20
A

m
plifier

B
oard

PCB Layouts 79

B
a
u
t
e
il

s
e
it

e
0
6
-0

9
-1

3
2
3
5
2
5
0

2
3
5
2
5
0

L
o
e
t
s
e
it
e

0
6
-0
9
-13

B
e
s
t
u
e
c
k
p
la

n
0
6
-0

9
-1

3
2
3
5
2
5
0

B
e
-P
la
n
 L
S

2
3
5
2
5
0

0
6
-0
9
-13

L
S
M
 L
o
e
t
s
e
it
e

2
3
5
2
5
0

0
6
-0
9
-13

L
S
M
 B

a
u
t
e
il

s
e
it

e
0
6
-0

9
-1

3
2
3
5
2
5
0

+

+ -

+ -

R28 R14

R30

R32

R16

R18

R34 R20

T2 T1

R
4
5

R29 R15

R31 R17

R33 R19

R35 R21

R37

R42

J
P
10

J
P
11

J
P
3

J
P
2

ST
2

J
P
6

S
T
4

J
P
12

U
1

S
T
3

ST6

J
P
1

JP4

U
4

C3

D
2

CP1

C1

J
P
9

D1J
P
8

R
4
4

S
T
5

R10 R24

J
P
5 R12 R26

R36 R23

R46

U
2

R
3
8

R
4
0

R
3
9

R7

R8

R4

L1

C2

CP2

R
4
3

R
4
7

R11 R25

R13 R27

R22

C6

R
4
8

U
3

C5

CP3

R
4
1

ST1C4

U
5

R
6

R3

R
5

D
is

pl
ay

B
oa

rd

80 Bill of Materials

Bill of Materials

Codec Board

Type Name Value Manufacturer Part No. Qty

Fuse F1 1.5 A TE Connectiv-
ity

MiniSMDC075F/24-2 1

Resistor R19 0R1 KOA Speer SR732ATTER100F 1

Resistor R20 0R0 KOA Speer RK73Z2ATTD 1

Resistor R5, R8 10K0 KOA Speer SG73P2ATTD1002F 2

Resistor R6, R10 2K2 KOA Speer SG73S2ATTD2201F 2

Resistor R7, R11 1K5 KOA Speer SG73P2ATTD1501F 2

Resistor R4, R9 470R0 KOA Speer SG73P2ATTD4700F 2

Resistor R12, R14,
R15

2K0 KOA Speer SG73S2ATTD2201F 3

Resistor R16, R22 0R0 KOA Speer RK73Z2BTTE 2

Resistor R13 2K0 Panasonic ERJ-8ENF2001V 1

Capacitor (Cer.) C34, C35 2700p0 AVX 08055C272K4T2A 2

Capacitor (Cer.) C3, C4, C5,
C6, C8, C9,
C14

100n0 AVX 08053C104KAT2A 7

Capacitor (Cer.) C10, C13 1n0 Vishay VJ0805A102KXAPW1BC 2

Capacitor (Cer.) C31, C32 220p0 Vishay VJ0805A221JXJCW1BC 2

Capacitor (Cer.) C11, C12 18p0 Vishay VJ0805A180GXACW1BC 2

Capacitor
(Elec.)

CP1, CP6,
CP8

10u0 Kemet EEV106M025A9BAA 3

Capacitor
(Elec.)

CP5, CP7 3u3 Panasonic EEE-1EA3R3NR 2

Capacitor
(Elec.)

C33 47u0 Panasonic EEE-TQV470XAP 1

Capacitor (Tnt.) C1-C2, U5,
C30

10u0 AVX F931A106MAA 4

Bill of Materials 81

Type Name Value Manufacturer Part No. Qty

Zener-Diode D1 5.6 V ON Semicon-
ductor

1SMB5919BT3G 1

Regulator U1 Texas Instru-
ments

LM1117MPX-
3.3/NOPB

1

Crystal Q1 Citizen HC49US-27.000MABJB 1

Audio Jack BU3-BU4 Lumberg 1503 08 2

Audio Codec U2 Cirrus Logic CS4270-CZZ 1

DA-Converter U3 Microchip MCP4726A0T-E/CH 1

Clock Genera-
tor

U4 Maxim Inte-
grated

MAX9485EUP+ 1

Pin Header ST2-ST3 FCI 87606-313LF 1

Pin Header ST4-ST5 FCI 87606-804LF 1

Pin Header ST1 TE Connectiv-
ity

3-1634580-2 1

Amplifier Board

Type Name Value Manufacturer Part No. Qty

Resistor R1, R2, R5,
R6, R9, R10,
R13, R14

2M2 Vishay CRCW08052M20FKEA 8

Resistor R3, R7, R11,
R15

4K7 KOA Speer SG73P2ATTD4701F 4

Resistor R4, R8, R12,
R16

1K0 KOA Speer SG73P2ATTD1001F 4

Resistor R17, R19 120R0 KOA Speer RK73H2ATTDD1200F 2

Resistor R18 560R0 KOA Speer SG73S2ATTD5600F 1

Resistor R20, R22 0R0 KOA Speer RK73Z2ATTD 2

Resistor R24, R25 100K0 Panasonic ERJ-6ENF1003V 2

Resistor R26, R27 10K0 Panasonic ERJ-6ENF1002V 2

Resistor R28 0R0 KOA Speer RK73Z2BTTE 1

Resistor R33 649K Panasonic ERJ-6ENF6493V 1

Potentiometer P1, P2 50K0 Bourns PTD902-2015K-A503 2

Potentiometer P3 1K0 Bourns PTD902-1015K-A102 1

82 Bill of Materials

Type Name Value Manufacturer Part No. Qty

Capacitor
(Film)

C1, C4, C6,
C9, C18,
C19, C22,
C23, C24,
C25

1u0 Cornell Du-
bilier

FCA1210C105M-G2 8

Capacitor (Cer.) C11 4u7 Murata GRM21BR61E475MA12L 1

Capacitor (Cer.) C12, C14,
C15

100n0 AVX 08053C104KAT2A 3

Capacitor (Cer.) C13, C16 10n0 Murata GRM216R71H103KA01D 2

Capacitor (Cer.) C17, C20,
C21

1n0 Vishay VJ0805A102KXAPW1BC 3

Capacitor (Cer.) C2, C7 270p0 Vishay VJ0805A271KXXCW1BC 2

Capacitor (Tnt.) CP1, CP3,
CP5, CP7

47u0 AVX TAJD476K016RNJ 4

Capacitor (Tnt.) CP9, CP13 100u0 AVX TAJD107K020RNJ 2

Capacitor
(Elec.)

CP10 33u0 Panasonic EEE-FK1E330P 1

Capacitor (Tnt.) CP11,
CP12,
CP15, CP16

10u0 AVX F931A106MAA 4

Capacitor (Tnt.) CP2, CP4,
CP6, CP8

22u0 Kemet T491A226K010AT 4

Diode D6 Diodes Inc. B130B-13-F 1

Diode D1 STMicroelec. STPS2L25U 1

Regulator U5 Texas Instru-
ments

LM1117MPX-
ADJ/NOPB

1

Regulator U6 Texas Instru-
ments

LM1117MPX-
5.0/NOPB

1

Regulator U7 Texas Instru-
ments

LM2675M-5.0 1

Inductor L1 Coilcraft DO3316P-473MLB 1

Connector ST2-ST3 Neutrik NJ6FD-V 2

Connector ST4, ST9 Neutrik NCJ9FI-V-0 2

Connector ST6-ST7 Switchcraft RAPC722X 2

Connector ST1 Lumberg 1503 08 1

Amplifier U3 Maxim Inte-
grated

MAX13331GEE/V+ 1

Pin Header ST8 TE Connectiv-
ity

3-1634222-2 1

Bill of Materials 83

Type Name Value Manufacturer Part No. Qty

Diode D2-D5 NXP BAS32L,115 4

Amplifier U4, U9 Texas Instru-
ments

OPA2134UA 2

Display Board

Type Name Value Manufacturer Part No. Qty

Resistor R1, R38,
R42

0R0 KOA Speer RK73Z2ATTD 3

Resistor R3, R4, R5,
R6, R7, R37,
R40

4K7 KOA Speer SG73P2ATTD4701F 7

Resistor R41 0R1 KOA Speer SR732ATTER100F 1

Resistor R10-R37 22R0 KOA Speer SG73P2ATTD22R0F 28

Resistor R8 100R0 KOA Speer SG73P2ATTD1000F 1

Capacitor (Cer.) C1 4u7 Murata GRM21BR61E475MA12L 1

Capacitor (Cer.) C2, C4, C5,
C6

100n0 AVX 08053C104KAT2A 4

Capacitor (Cer.) C3 10n0 Murata GRM216R71H103KA01D 1

Capacitor
(Elec.)

CP2 33u0 Panasonic EEE-FK1E330P 1

Capacitor (Tnt.) CP3 10u0 AVX F931A106MAA 1

Capacitor (Tnt.) CP1 100u0 AVX TAJD107K020RNJ 1

Diode D2 Diodes Inc. B130B-13-F 1

Diode D1 STMicroelec. STPS2L25U 1

Transistor T1-T2 ON Semicon-
ductor

2N7002LT1G 2

Regulator U4 Texas Instru-
ments

LM2675M-3.3/NOPB 1

EEPROM U5 Microchip 24LC64T-I/SN 1

Inductor L1 Coilcraft DO3316P-473MLB 1

Connector ST1 Molex 47659-1000 1

Connector ST2 Switchcraft RAPC722X 1

HDMI Receiver U1 Texas Instru-
ments

TFP401APZP 1

Touch Con-
troller

U3 Analog De-
vices Inc.

AD7879-1WARUZ-RL7 1

84 Bill of Materials

Type Name Value Manufacturer Part No. Qty

DA-Converter U2 Microchip MCP4726A2T-E/CH 1

Connector TE Connectiv-
ity

1658620-9 2

Ribbon Cable Amphenol 135-2801-040FT 1

Connector TE Connectiv-
ity

499252-1 2

Connector Kobiconn 171-3215-EX 2

HDMI Cable SpeaKa HDMI 0,3 m 1

List of Acronyms 85

List of Acronyms

Acronym Description Page List

AC Alternating Current
An electrical current with alternating direction. In this con-
text, a superposition of sine waves with various frequencies.

42, 43, 49, 54

ADC Analog to Digital Converter
Transfers an analog signal into a digital signal.

7, 12, 24, 30, 31, 34,
41, 54

ALSA Advanced Linux Sound Architecture
A subsystem of the Linux kernel for interfacing sound hard-
ware.

15, 16, 22, 24–26,
29, 30, 32–34, 54,
85

AMBA Advanced Microcontroller Bus Architecture
A data bus used for connecting various compontents inside
a SoC.

14, 29, 32

API Application Programming Interface
A set of functions for accessing a software component, e.g. a
library.

15, 16, 32, 33

ARM Advanced Reduced Instruction Set Computing Machines
A computer architecture invented by a company of the same
name. Popular for embedded systems.

14, 32, 61

ASoC ALSA System On Chip
A part of ALSA, specific for embedded platforms.

29, 31–33

CEC Consumer Electronics Control
Allows control of multimedia devices through high defini-
tion multimedia interface (HDMI) links.

14

CPU Central Processing Unit
A piece of hardware for executing instructions, i.e. running
software.

14, 16, 30, 32, 45,
50–52, 86, 87

DAC Digital to Analog Converter
Transfers a digital signal into an analog signal.

7, 12, 30, 37, 42, 45

DAI Digital Audio Interface
Electrical interface for transmitting audio data. An example
is I2S .

31–33

86 List of Acronyms

Acronym Description Page List

DC Direct Current
An unidirectional electrical current. In this context, a current
with constant or slow changing voltage.

41, 43

DMA Direct Memory Access
A method for transferring data from a peripheral to the
RAM or back without occupying the CPU.

14, 30–33, 86

DREQ Data Request
A signal used for signalling the DMA controller that new
data should be send or received.

31–33

DSL Digital Subscriber Line
A technique to transmit digital data via regular telephone
wires and thus providing Internet access.

6, 10

DSP Digital Signal Processor
A processor dedicated for handling digital signals like audio
or video. Compared to a classical microprocessor, it has a
special architecture and a lot of extra instructions for fast
(real-time) processing.

12

DVB Digital Video Broadcast
A method for broadcasting video and audio data via digital
channels. Widely used for television.

6

GPIO General Purpose Input Output
Lines of ICs that have no dedicated functionality and can be
used for application specific control.

49

HDMI High Definition Multimedia Interface
A standard for transmitting audio and video signals. Com-
monly used in consumer electronics.

12, 14, 39, 44, 45,
62, 85

I/O Input/output
Communication of a IC with the outside world (other ICs,
sensors...)

29, 33

I2C Inter Integrated Circuit
Electrical interface for transmitting generic digital data over
short distances with low speed (e.g. for control data)

12–14, 31, 33, 34,
39, 45

I2S Integrated Interchip Sound
Electrical interface for transmitting digital audio data over
short distances

13–15, 24, 29–34,
39, 61

IC Integrated Circuit 11–13, 33, 35, 40,
43, 86, 87

IPDV IP Packet Delay Variation
Difference between the one-way-delay of two packets.

10

JSON JavaScript Object Notation
A string based data format for transmitting data between
applications.

27

List of Acronyms 87

Acronym Description Page List

MDCT Modified Discrete Cosine Transform
A transform between time and frequency domain, similar to
the Fourier transform, but with some advantages for audio
coding.

10

MIDI Musical Instrument Digital Interface
A protocol for transmitting audio event messages, such as
tone pitch and velocity.

5, 6

P2P Peer-to-peer
Direct connection between clients without an intermeditate
server.

6–8

PWM Pulse Wide Modulation
A technique for modulating an analog signal by using a
digital signal with a fixed frequency, but variable duty cycle.

37, 54

QoS Quality Of Service
Methods for increasing the quality of a network connec-
tion. For example by reserving a certain amount of network
bandwidth at each node of the network.

5

RAM Random Access Memory
Memory inside a computer that provides random access to
the data by the CPU.

14, 30–32, 86

RTT Round Trip Time
The time for a signal to travel back and forth along a network
connection.

5

SNR Signal To Noise Ratio
A measure for the amount of noise in a signal.

54, 56, 58

SoC System On Chip
A microprocessor and some peripheral integrated in a single
IC

11, 12, 14, 29, 33,
85

SPI Serial Peripheral Interface
An electrical interface for transmitting general purpose data.
An alternative to I2C .

31

SVG Scalable Vector Graphics
A file format that carries vector graphics.

27

TCP Transmission Control Protocol
A transport protocol for transmission of data streams via the
Internet. In contrast to UDP, several techniques improve the
reliability of the transmission.

5, 19

TFT Thin Film Transistor
A technology for building liquid-crystal displays.

44, 45

THD Total Harmonic Distortion
A measure for the amount of harmonic distortions induced
by non-linearities.

54, 56, 58

88 List of Acronyms

Acronym Description Page List

UDP Transmission Control Protocol
A transport protocol for transmission of data packets via the
Internet.

5, 19, 87

URI Uniform Resource Identifier
A string that identifies a resource, especially in the context
of web applications.

27

VoIP Voice over IP
Communicating over the Internet like with a classical tele-
phone.

10

WAMP WebSocket Application Messaging Protocol
A protocol that provides remote procedure calls and the
publish and subscribe pattern via WebSocket.

27

Content of the DVD 89

90 Content of the DVD

Content of the DVD

The attached DVD contains the implemented software components and PCB files. Furthermore,
an electronic version of this thesis is contained. The directory structure consists of the following
parts:

∙ The simulator used for evaluating the system is stored in the echo directory.

∙ In the directory jamberry/src, the Audio over IP software as presented in this thesis is
stored. The GUI can be found in jamberry/gui. Some other directories in jamberry provide
additional modules needed for compilation.

∙ The directory kernel contains the Linux kernel sources as used on the embedded system.

∙ latex contains the source code for compiling this thesis.

∙ The schematics and the PCB layouts can be found in pcb.

∙ A PDF version of this thesis is located in the root directory.

	Title page
	Abstract
	Declaration by Candidate
	Table of Contents
	List of Figures
	List of Tables and Sourcecodes
	List of Symbols
	1 Introduction
	2 State of the Art
	2.1 Effect of Latency for Musical Interaction
	2.2 Musical Interaction with High Latency
	2.3 Existing Approaches

	3 Fundamentals
	3.1 Signal Paths
	3.2 Network Latency
	3.3 Audio Coding
	3.4 Audio on Embedded Systems
	3.4.1 Audio Codecs
	3.4.2 Digital Interfaces
	3.4.3 Direct Memory Access
	3.4.4 Audio Software
	3.4.5 Advanced Linux Sound Architecture

	4 Audio over IP
	4.1 Low-Latency Audio Transmission
	4.1.1 Buffer Adjustment
	4.1.2 Packet Loss Handling

	4.2 Implementation
	4.2.1 Data flow
	4.2.2 Thread Activities
	4.2.3 Graphical User Interface

	5 Audio Kernel Driver
	5.1 Abstract Description
	5.2 Structure
	5.3 DMA Driver
	5.4 Platform Driver
	5.5 Codec Driver
	5.5.1 I²S Driver
	5.5.2 Clocking

	5.6 Machine Driver

	6 Hardware Design
	6.1 Hardware overview
	6.2 Codec board
	6.3 Amplifier board
	6.4 Display Board

	7 Evaluation
	7.1 Software
	7.1.1 Evaluation System
	7.1.2 Network Latency
	7.1.3 Journey of an Impulse
	7.1.4 Influences on Overall Latency

	7.2 Hardware
	7.2.1 Audio Output
	7.2.2 Audio Input
	7.2.3 Headphone Amplifier
	7.2.4 Input Amplifier

	7.3 Frequency Response

	8 Conclusion
	Bibliography
	Mathematical Proofs
	Schematics
	PCB Layouts
	Bill of Materials
	List of Acronyms
	Content of the DVD

